Aktuelle Dermatologie 2020; 46(08/09): 375-378
DOI: 10.1055/a-1148-3867
Eine Klinik im Blickpunkt

Genetisch bedingte Hauterkrankungen – Xeroderma pigmentosum und das CEDNIK-Syndrom

Genetic Skin Disorders – Xeroderma pigmentosum and CEDNIK Syndrome
M. C. Martens
Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
,
L. Boeckmann
Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
,
S. Emmert
Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
› Institutsangaben

Zusammenfassung

Die Rostocker Hautklinik ist Europäisches Referenznetzwerkzentrum für seltene Hauterkrankungen mit den besonderen Schwerpunkten Xeroderma pigmentosum und Ichthyosen. Diese Themen vertreten wir auch in der medizinischen Grundlagenforschung.

Xeroderma pigmentosum (XP) ist eine seltene, autosomal-rezessive Erkrankung, die entsprechend der Gendefekte in 7 Komplementationsgruppen – XP-A bis XP-G sowie die sog. XP-Variante (XP-V) – eingeteilt wird. XP ist ein Nukleotid-Exzisions-Reparatur-Defektsyndrom und äußert sich v. a. durch vorzeitige Hautalterung und frühzeitige Entwicklung von Hauttumoren.

Das seltene, neurokutane CEDNIK-Syndrom ist eine autosomal-rezessive Erkrankung, der eine Loss-of-Function-Mutation in SNAP29 zugrunde liegt. SNAP29 ist ein SNARE-Protein und an intrazellulären Membranfusionen beteiligt. CEDNIK ist ein Akronym für den mit dem Syndrom assoziierten Symptomkomplex aus zerebraler Dysgenese, Neuropathie, Ichthyose und Palmoplantarkeratosen. CEDNIK-Patienten weisen neben der Ichthyose zudem Gedeihstörungen, eine psychomotorische Retardierung und faziale Dysmorphien auf.

Abstract

The Clinic and Policlinic for Dermatology and Venerology Rostock is part of the European Reference Network for rare skin diseases. We specialize in xeroderma pigmentosum and ichthyoses. Those topics are also part of our basic research focusses.

Xeroderma pigmentosum (XP) is a rare, autosomal-recessive disease. The gene defects correspond with the seven complementation groups: XP-A to XP-G and the so-called XP variant (XP-V).

XP is a nucleotide excision repair defect syndrome that shows premature skin aging and an early onset of skin tumor development in childhood.

The rare neurocutaneous CEDNIK syndrome is an autosomal-recessive disease. The underlying mutation is a loss-of-function mutation in SNAP29 which encodes a SNARE protein implicated in intracellular membrane fusion. CEDNIK is an acronym for cerebral dysgenesis, neuropathy, ichthyosis and palmoplantar keratoderma. CEDNIK patients show a failure to thrive, a psychomotor retardation and facial dysmorphia besides ichthyosis.



Publikationsverlauf

Artikel online veröffentlicht:
20. August 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 European Reference Networks (ERN). Skin. University Medical Center Rostock. Im Internet: https://ern-skin.eu/reference-center/universitatsmedizin-rostock-de25/
  • 2 Lehmann J, Schubert S, Emmert S. Xeroderma pigmentosum: diagnostic procedures, interdisciplinary patient care, and novel therapeutic approaches. J Dtsch Dermatol Ges 2014; 12: 867-872 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/25262888
  • 3 Hirai Y, Kodama Y, Moriwaki SI. et al. Heterozygous individuals bearing a founder mutation in the XPA DNA repair gene comprise nearly 1 % of the Japanese population. Mutat Res – Fundam Mol Mech Mutagen 2006; 601: 171-178
  • 4 Schubert S, Lehmann J, Kalfon L. et al. Clinical utility gene card for: Xeroderma pigmentosum. Eur J Hum Genet 2014; 22: 953 Im Internet: http://dx.doi.org/10.1038/ejhg.2013.233
  • 5 Lehmann J, Seebode C, Martens MC. et al. Xeroderma pigmentosum - Facts and Perspectives. Aktuelle Derm 2018; 44: 232-236
  • 6 Yuasa M, Masutani C, Eki T. et al. Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene. Oncogene 2000; 19: 4721-4728 Im Internet: http://www.nature.com/articles/1203842
  • 7 Marteijn JA, Lans H, Vermeulen W. et al. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 2014; 15: 465-481
  • 8 Lehmann J, Seebode C, Smolorz S. et al. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF. Cell Mol Life Sci 2017; 74: 2081-2094 Im Internet: http://link.springer.com/10.1007/s00018-017-2455-7
  • 9 Emmert S. Xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. In: Irvine AD, Hoeger PH, Yan AC. Harper’s Textbook of Pediatric Dermatology. Oxford: Wiley-Blackwell; 2011: 135.1-135.24
  • 10 Bradford PT, Goldstein AM, Tamura D. et al. Cancer and neurologic degeneration in xeroderma pigmentosum: Long term follow-up characterises the role of DNA repair. J Med Genet 2011; 48: 168-176
  • 11 Kraemer KH, Lee MM, Andrews AD. et al. The Role of Sunlight and DNA Repair in Melanoma and Nonmelanoma Skin Cancer: The Xeroderma Pigmentosum Paradigm. Arch Dermatol 1994; 130: 1018-1021
  • 12 Ramkumar HL, Brooks BP, Cao X. et al. Ophthalmic manifestations and histopathology of xeroderma pigmentosum: Two clinicopathological cases and a review of the literature. Surv Ophthalmol 2011; 56: 348-361
  • 13 Anttinen A, Koulu L, Nikoskelainen E. et al. Neurological symptoms and natural course of xeroderma pigmentosum. Brain 2008; 131: 1979-1989
  • 14 Lehmann J, Schubert S, Emmert S. Xeroderma pigmentosum: diagnostic procedures, interdisciplinary patient care, and novel therapeutic approaches. J Dtsch Dermatol Ges 2014; 12: 867-872
  • 15 Weisberg NK, Varghese M. Therapeutic response of a brother and sister with xeroderma pigmentosum to imiquimod 5 % cream. Dermatologic Surg 2002; 28: 518-523 Im Internet: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed5&NEWS=N&AN=2002229934
  • 16 Nagore E, Sevila A, Sanmartin O. et al. Excellent response of basal cell carcinomas and pigmentary changes in xeroderma pigmentosum to imiquimod 5 % cream. Br J Dermatol 2003; 149: 858-861
  • 17 Roseeuw D. The treatment of basal skin carcinomas in two sisters with xeroderma pigmentosum. Clin Exp Dermatol 2003; 28: 30-32
  • 18 Giannotti B, Vanzi L, Difonzo EM. et al. The treatment of basal cell carcinomas in a patient with xeroderma pigmentosum with a combination of imiquimod 5 % cream and oral acitretin. Clin Exp Dermatol 2003; 28: 33-35
  • 19 Nijsten T, Lapière K, Lambert J. A patient with xeroderma pigmentosum treated with imiquimod 5 % cream. J Am Acad Dermatol 2005; 52: 169-170
  • 20 Malhotra AK, Gupta S, Khaitan BK. et al. Multiple basal cell carcinomas in xeroderma pigmentosum treated with imiquimod 5 % cream. Pediatr Dermatol 2008; 25: 488-491
  • 21 Alessi SS, Sanches JA, de Oliveira WR. et al. Treatment of cutaneous tumors with topical 5 % imiquimod cream. Clinics 2009; 64: 961-966
  • 22 Yang JQ, Chen XY, Engle MY. et al. Multiple facial basal cell carcinomas in xeroderma pigmentosum treated with topical imiquimod 5 % cream. Dermatol Ther 2015; 28: 243-247
  • 23 Latour I, Hernández-Martín A, Ged C. et al. Reversed actinic damage in two children with xeroderma pigmentosum treated with topical imiquimod. J Eur Acad Dermatology Venereol 2018; 32: e282-e284
  • 24 Tanaka K, Sekiguchi M, Okada Y. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc Natl Acad Sci 1975; 72: 4071-4075 Im Internet: https://www.pnas.org/content/72/10/4071
  • 25 Zahid S, Brownell I. Repairing DNA damage in xeroderma pigmentosum: T4N5 lotion and gene therapy. J Drugs Dermatol 2008; 7: 405-408
  • 26 Moscarella E, Argenziano G, Longo C. et al. Management of cancerization field with a medical device containing photolyase: a randomized, double-blind, parallel-group pilot study. J Eur Acad Dermatology Venereol 2017; 31: e401-e403 Im Internet: http://doi.wiley.com/10.1111/jdv.14209
  • 27 Fife D, Laitinen MA, Myers DJ. et al. Vismodegib Therapy for Basal Cell Carcinoma in an 8-Year-Old Chinese Boy with Xeroderma Pigmentosum. Pediatr Dermatol 2017; 34: 163-165
  • 28 Soura E, Plaka M, Dessinioti C. et al. Use of vismodegib for the treatment of multiple basal cell carcinomas in a patient with xeroderma pigmentosum. Pediatr Dermatol 2018; 35: e334-e336 Im Internet: http://doi.wiley.com/10.1111/pde.13610
  • 29 Salomon G, Maza A, Boulinguez S. et al. Efficacy of anti-programmed cell death-1 immunotherapy for skin carcinomas and melanoma metastases in a patient with xeroderma pigmentosum. Br J Dermatol 2018; 178: 1199-1203
  • 30 Hauschild A, Eichstaedt J, Möbus L. et al. Regression of melanoma metastases and multiple non-melanoma skin cancers in xeroderma pigmentosum by the PD1-antibody pembrolizumab. Eur J Cancer 2017; 77: 84-87 Im Internet: https://linkinghub.elsevier.com/retrieve/pii/S095980491730792X
  • 31 Campbell RM, DiGiovanna JJ. Skin cancer chemoprevention with systemic retinoids: An adjunct in the management of selected high-risk patients. Dermatol Ther 2006; 19: 306-314
  • 32 Kraemer KH, DiGiovanna JJ, Moshell AN. et al. Prevention of Skin Cancer in Xeroderma Pigmentosum with the Use of Oral Isotretinoin. N Engl J Med 1988; 318: 1633-1637 Im Internet: http://www.nejm.org/doi/abs/10.1056/NEJM198806233182501
  • 33 Sprecher E, Ishida-Yamamoto A, Mizrahi-Koren M. et al. A mutation in SNAP29, coding for a SNARE protein involved in intracellular trafficking, causes a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma. Am J Hum Genet 2005; 77: 242-251 Im Internet: http://www.sciencedirect.com/science/article/pii/S0002929707629140
  • 34 Hsu T, Coughlin CC, Monaghan KG. et al. CEDNIK: Phenotypic and Molecular Characterization of an Additional Patient and Review of the Literature. Child Neurol Open 2017; 4: 2329048X17733214 Im Internet: http://journals.sagepub.com/doi/10.1177/2329048X17733214
  • 35 Fuchs-Telem D, Stewart H, Rapaport D. et al. CEDNIK syndrome results from loss-of-function mutations in SNAP29. Br J Dermatol 2011; 164: 610-616
  • 36 McDonald-McGinn DM, Fahiminiya S, Revil T. et al. Hemizygous mutations in SNAP29 unmask autosomal recessive conditions and contribute to atypical findings in patients with 22q11.12Ds. J Med Genet 2013; 50: 80-90
  • 37 Rapaport D, Lugassy Y, Sprecher E. et al. Loss of SNAP29 Impairs Endocytic Recycling and Cell Motility. PLoS One 2010; 5: e9759
  • 38 Rotem-Yehudar R, Galperin E, Horowitz M. Association of Insulin-like Growth Factor 1 Receptor with EHD1 and SNAP29. J Biol Chem 2001; 276: 33054-33060
  • 39 Lu Q, Insinna C, Ott C. et al. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol 2015; 17: 228-240
  • 40 Morelli E, Mastrodonato V, Beznoussenko GV. et al. An essential step of kinetochore formation controlled by the SNARE protein Snap29. Embo J 2016; 35: 2223-2237
  • 41 Diao J, Liu R, Rong Y. et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 2015; 520: 563-566
  • 42 Schiller SA, Seebode C, Wieser GL. et al. Establishment of Two Mouse Models for CEDNIK Syndrome Reveals the Pivotal Role of SNAP29 in Epidermal Differentiation. J Invest Dermatol 2016; 136: 672-679 http://dx.doi.org/10.1016/j.jid.2015.12.020