Anästhesiol Intensivmed Notfallmed Schmerzther 2021; 56(04): 261-275
DOI: 10.1055/a-1118-7488
Topthema
CME-Fortbildung

Substanzen zur Flüssigkeitstherapie und Outcome – ein Update

Solutions for Fluid Treatment and Outcome – an Update
Matthias Grünewald
,
Matthias Heringlake

Zusammenfassung

Die Flüssigkeitstherapie zählt zu den häufigsten medizinischen Maßnahmen mit dem Ziel, den Flüssigkeitshaushalt zu normalisieren. Ein entscheidendes Kriterium für die Effizienz des Flüssigkeits- oder Volumenersatzes ist die Funktionsfähigkeit der Glykokalyx, einer dünnen endothelialen Glykoproteinschicht. Sie ist ein wesentlicher Faktor für den Flüssigkeitsaustausch und -transport zwischen Gefäßsystem und Gewebe. Das erst jüngst beschriebene revidierte Starling-Prinzip erweitert das Verständnis erheblich. Aus klinischer Sicht sollte die Flüssigkeitstherapie eine zeitnahe Euvolämie anstreben, ohne relevante Nebenwirkungen zu induzieren. Es stehen hierfür sowohl kristalloide als auch natürliche oder synthetische kolloidale Lösungen zur Verfügung. Bei den kristalloiden Lösungen scheinen die sog. balancierten Vollelektrolytlösungen mit weniger Nebenwirkungen assoziiert zu sein. Kolloide Lösungen haben bei intakter Gefäßbarriere einen höheren Volumeneffekt, besitzen aber teilweise erhebliche Nebenwirkungen. Einige synthetische Kolloide dürfen daher nicht mehr bei kritisch kranken Patienten eingesetzt werden. Im Gegensatz dazu führt die Gabe von Humanalbumin 20% bei kardiovaskulär erkrankten, hypalbuminämen Patienten zu einer Reduktion von Nierenfunktionsstörungen und scheint auch mit weiteren klinischen Vorteilen assoziiert zu sein. Inwieweit zukünftige, individualisierte Therapieansätze das Outcome beeinflussen können, bleibt abzuwarten.

Ziel der Flüssigkeitstherapie ist das zeitnahe Erreichen einer Euvolämie, ohne relevante Nebenwirkungen zu induzieren. Hierfür stehen sowohl kristalloide als auch kolloidale Lösungen zur Verfügung. Der Beitrag veranschaulicht gegenwärtige Aspekte des Flüssigkeitsaustauschs an der Gefäßbarriere, gibt ein Update über die derzeit verfügbaren Optionen in der perioperativen Flüssigkeitstherapie und fasst aktuell publizierte Studien zusammen.

Abstract

Fluid therapy is one of the most frequently used medical interventions with the aim of normalizing the fluid balance. A decisive criterion for the efficiency of fluid or volume replacement is the functionality of the glycocalyx, a thin endothelial glycoprotein layer. Its solidity is an essential factor for fluid exchange and transport from the vascular system to the tissue. The recently described revised Starling principle extends the understanding considerably. From a clinical point of view, fluid treatment should aim for timely euvolemia without inducing relevant side effects. Both crystalloid and natural or synthetic colloidal solutions are available. In the case of crystalloid solutions, the so-called balanced solutions seem to be associated with fewer side effects. If the vascular barrier is intact, colloid solutions have a higher volume effect, but may have significant side effects limiting their use. At least in Europe, some synthetic colloids shall therefore no longer be used in critically ill patients. In contrast, treatment with albumin 20% in hypalbuminemic patients with cardiovascular disease leads to a reduced incidence of acute kidney injury and has also been associated with other clinical benefits. To what extent future, individualized therapeutic approaches employing colloids will influence the outcome is currently speculative.

Kernaussagen
  • Die Glykokalyx ist ein wichtiger Bestandteil der Gefäßbarriere, die auf pathophysiologische Veränderungen sensibel reagiert.

  • Störungen der Glykokalyx können zu einer vermehrten, lang nachweisbaren Einlagerung von Kolloiden in das Gewebe führen und sind vermutlich ursächlich für deren Funktionsstörungen.

  • Balancierte Lösungen (Kristalloide und Kolloide) haben gegenüber unbalancierten Lösungen sehr wahrscheinlich Vorteile hinsichtlich des Säure-Basen- und Elektrolythaushaltes und reduzieren somit konsekutive Komplikationen.

  • Synthetische Kolloide können zum Volumenersatz vor allem bei akuten Blutungen eingesetzt werden. Einige Daten weisen auf einen geringeren Volumenbedarf hin. Der Einfluss auf die Anwendungssicherheit und Komplikationsrate wird weiterhin in randomisierten Studien geklärt.

  • Mit Humanalbumin steht ein natürliches Kolloid zur Verfügung, das perioperativ z. B. gerade bei der Vermeidung einer Hypalbuminämie Vorteile zeigen konnte. Für einen generellen Einsatz in der Volumentherapie gibt es derzeit keine ausreichende Evidenz und diese ist kritisch unter Verfügbarkeitsaspekten abzuwägen.



Publication History

Article published online:
22 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Brandstrup B. Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol 2006; 20: 265-283
  • 2 Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). et al. S3-Leitlinie Intravasale Volumentherapie beim Erwachsenen (Stand 21.09.2020). AWMF-Registernr. 001/020. Im Internet (Stand: 19.02.2021): https://www.awmf.org/leitlinien/detail/ll/001-020.html
  • 3 Kwon AH, Slocum jr. AH, Varelmann D. et al. Rapidly scalable mechanical ventilator for the COVID-19 pandemic. Intensive Care Med 2020; 46: 1642-1644
  • 4 Janakan G, Ellis H. Dr Thomas Aitchison Latta (c1796-1833): pioneer of intravenous fluid replacement in the treatment of cholera. J Med Biogr 2013; 21: 70-74
  • 5 Ringer S. Concerning the Influence exerted by each of the Constituents of the Blood on the Contraction of the Ventricle. J Physiol 1882; 3: 380-393
  • 6 Hartmann AF, Senn MJ. Studies in the metabolism of Sodium r-lactate. I. response of normal human subjects to the intravenous injection of sodium r-lactate. J Clin Invest 1932; 11: 327-335
  • 7 Starling EH. On the Absorption of Fluids from the Connective Tissue Spaces. J Physiol 1896; 19: 312-326
  • 8 Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012; 108: 384-394
  • 9 Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 2010; 87: 198-210
  • 10 Michel CC, Woodcock TE, Curry FE. Understanding and extending the Starling principle. Acta Anaesthesiol Scand 2020; 64: 1032-1037
  • 11 Vincent JL, Russell JA, Jacob M. et al. Albumin administration in the acutely ill: what is new and where next?. Crit Care 2014; 18: 231
  • 12 Jacob M, Chappell D. Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care 2013; 19: 282-289
  • 13 Malbrain MLNG, Van Regenmortel N, Saugel B. et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four Dʼs and the four phases of fluid therapy. Ann Intensive Care 2018; 8: 66
  • 14 Milford EM, Reade MC. Resuscitation Fluid Choices to Preserve the Endothelial Glycocalyx. Crit Care 2019; 23: 77
  • 15 Potter DR, Jiang J, Damiano ER. The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circ Res 2009; 104: 1318-1325
  • 16 Rehm M, Bruegger D, Christ F. et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 2007; 116: 1896-1906
  • 17 Steppan J, Hofer S, Funnke B. et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res 2011; 165: 136-141
  • 18 Nieuwdorp M, Mooij HL, Kroon J. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 2006; 55: 1127-1132
  • 19 Chappell D, Jacob M, Hofmann-Kiefer K. et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology 2007; 107: 776-784
  • 20 Annecke T, Chappell D, Chen C. et al. Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury. Br J Anaesth 2010; 104: 414-421
  • 21 Semler MW, Kellum JA. Balanced Crystalloid Solutions. Am J Respir Crit Care Med 2019; 199: 952-960
  • 22 Jacob M, Chappel D, Hofmann-Kiefer K. et al. The intravascular volume effect of Ringerʼs lactate is below 20 %: a prospective study in humans. Crit Care 2012; 16: R86
  • 23 Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999; 90: 1265-1270
  • 24 Sen A, Keener CM, Sileanu FE. et al. Chloride Content of Fluids Used for Large-Volume Resuscitation Is Associated With Reduced Survival. Crit Care Med 2017; 45: e146-e153
  • 25 Yunos NM, Bellomo R, Hegarty C. et al. Association between a chloride-liberal vs. chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 2012; 308: 1566-1572
  • 26 Shaw AD, Bagshaw SM, Goldstein SL. et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 2012; 255: 821-829
  • 27 Volta CA, Trentini A, Farabegoli L. et al. Effects of two different strategies of fluid administration on inflammatory mediators, plasma electrolytes and acid/base disorders in patients undergoing major abdominal surgery: a randomized double blind study. J Inflamm (Lond) 2013; 10: 29
  • 28 Pfortmueller CA, Fubk G-C, Reiterer C. et al. Normal saline versus a balanced crystalloid for goal-directed perioperative fluid therapy in major abdominal surgery: a double-blind randomised controlled study. Br J Anaesth 2018; 120: 274-283
  • 29 Maheshwari K, Turan A, Makarowa N. et al. Saline versus Lactated Ringerʼs Solution: The Saline or Lactated Ringerʼs (SOLAR) Trial. Anesthesiology 2020; 132: 614-624
  • 30 Odor PM, Bampoe S, Dushianthan A. et al. Perioperative administration of buffered versus non-buffered crystalloid intravenous fluid to improve outcomes following adult surgical procedures: a Cochrane systematic review. Perioper Med (Lond) 2018; 7: 27
  • 31 Semler MW, Self WH, Wanderer JP. et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N Engl J Med 2018; 378: 829-839
  • 32 Brown RM, Wang L, Coston TD. et al. Balanced Crystalloids versus Saline in Sepsis. A Secondary Analysis of the SMART Clinical Trial. Am J Respir Crit Care Med 2019; 200: 1487-1495
  • 33 Young P, Bailey M, Beasley R. et al. Effect of a Buffered Crystalloid Solution vs. Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit: The SPLIT Randomized Clinical Trial. JAMA 2015; 314: 1701-1710
  • 34 Hammond DA, Lam SW, Rech MA. et al. Balanced Crystalloids Versus Saline in Critically Ill Adults: A Systematic Review and Meta-analysis. Ann Pharmacother 2020; 54: 5-13
  • 35 Marx G, Meybohm P, Schuerholz T. et al. Impact of a new balanced gelatine on electrolytes and pH in the perioperative care. PLoS One 2019; 14: e0213057
  • 36 Martin GS, Bassett P. Crystalloids vs. colloids for fluid resuscitation in the Intensive Care Unit: A systematic review and meta-analysis. J Crit Care 2019; 50: p.144-154
  • 37 Voldby AW, Brandstrup B. Fluid therapy in the perioperative setting-a clinical review. J Intensive Care 2016; 4: 27
  • 38 Lewis SR, Pritchard MW, Evans DJ. et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev 2018; (08) CD000567
  • 39 European Medicines Agency. Hydroxyethyl starch solutions for infusion – Hydroxyethyl-starch solutions (HES) no longer to be used in patients with sepsis or burn injuries or in critically ill patients (EMA/809470/2013) (19.12.2013). Im Internet (Stand: 22.02.2021): https://www.ema.europa.eu/en/medicines/human/referrals/hydroxyethyl-starch-solutions-infusion
  • 40 Vincent JL, Navickis RJ, Wilkes MM. Morbidity in hospitalized patients receiving human albumin: a meta-analysis of randomized, controlled trials. Crit Care Med 2004; 32: 2029-2038
  • 41 Groeneveld AB, Navickis RJ, Wilkes MM. Update on the comparative safety of colloids: a systematic review of clinical studies. Ann Surg 2011; 253: 470-483
  • 42 Perner A, Haase N, Guttormsen AB. et al. Hydroxyethyl starch 130/0.42 versus Ringerʼs acetate in severe sepsis. N Engl J Med 2012; 367: 124-134
  • 43 Myburgh JA, Finfer S, Bellomo R. et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 2012; 367: 1901-1911
  • 44 Brunkhorst FM, Engel C, Bloos F. et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358: 125-139
  • 45 Ertmer C, Zwißler B, Van Aken H. et al. Fluid therapy and outcome: a prospective observational study in 65 German intensive care units between 2010 and 2011. Ann Intensive Care 2018; 8: 27
  • 46 Yates DR, Davies SJ, Milner HE, Wilson RJT. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth 2014; 112: 281-289
  • 47 Kabon B, Sessler DI, Kurz A. Crystalloid-Colloid Study Team. Effect of Intraoperative Goal-directed Balanced Crystalloid versus Colloid Administration on Major Postoperative Morbidity: A Randomized Trial. Anesthesiology 2019; 130: 728-744
  • 48 Joosten A, Delaporte A, Ickx B. et al. Crystalloid versus Colloid for Intraoperative Goal-directed Fluid Therapy Using a Closed-loop System: A Randomized, Double-blinded, Controlled Trial in Major Abdominal Surgery. Anesthesiology 2018; 128: 55-66
  • 49 Futier E, Garot M, Godet T. et al. Effect of Hydroxyethyl Starch vs. Saline for Volume Replacement Therapy on Death or Postoperative Complications Among High-Risk Patients Undergoing Major Abdominal Surgery: The FLASH Randomized Clinical Trial. JAMA 2020; 323: 225-236
  • 50 Schmid S, Kapfer B, Heim M. et al. Algorithm-guided goal-directed haemodynamic therapy does not improve renal function after major abdominal surgery compared to good standard clinical care: a prospective randomised trial. Crit Care 2016; 20: 50
  • 51 Pagel JI, Rehm M, Kammerer T. et al. Hydroxyethyl Starch 130/0.4 and Its Impact on Perioperative Outcome: A Propensity Score Matched Controlled Observation Study. Anesth Analg 2018; 126: 1949-1956
  • 52 Fleischhacker E, Trentzsch H, Kuppinger D. et al. Fluid resuscitation after severe trauma injury : U-shaped associations between tetrastarch dose and survival time or frequency of acute kidney failure. Med Klin Intensivmed Notfmed 2020; 115: 591-599
  • 53 Wiedermann CJ, Joannidis M. Accumulation of hydroxyethyl starch in human and animal tissues: a systematic review. Intensive Care Med 2014; 40: 160-170
  • 54 Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology 2005; 41: 1211-1219
  • 55 Sedrakyan A, Gondek K, Paltiel D, Elefteriades JA. Volume expansion with albumin decreases mortality after coronary artery bypass graft surgery. Chest 2003; 123: 1853-1857
  • 56 Suzuki T, Koyama K. Open randomized trial of the effects of 6% hydroxyethyl starch 130/0.4/9 and 5% albumin on safety profile, volume efficacy, and glycocalyx degradation in hepatic and pancreatic surgery. J Anesth 2020; 34: 912-923
  • 57 Kammerer T, Brettner F, Hilferink S. et al. No Differences in Renal Function between Balanced 6% Hydroxyethyl Starch (130/0.4) and 5% Albumin for Volume Replacement Therapy in Patients Undergoing Cystectomy: A Randomized Controlled Trial. Anesthesiology 2018; 128: 67-78
  • 58 Duncan AE, Soltesz E, Leung S. et al. Effect of 6% hydroxyethyl starch 130/0.4 on kidney and haemostatic function in cardiac surgical patients: a randomised controlled trial. Anaesthesia 2020; 75: 1180-1190
  • 59 Kingeter AJ, Raghunathan K, Munson SH. et al. Association between albumin administration and survival in cardiac surgery: a retrospective cohort study. Can J Anaesth 2018; 65: 1218-1227
  • 60 Wiedermann CJ, Wiedermann W, Joannidis M. Causal relationship between hypoalbuminemia and acute kidney injury. World J Nephrol 2017; 6: 176-187
  • 61 Lee E-H, Kim W-J, Kim J-Y. et al. Effect of Exogenous Albumin on the Incidence of Postoperative Acute Kidney Injury in Patients Undergoing Off-pump Coronary Artery Bypass Surgery with a Preoperative Albumin Level of Less Than 4.0 g/dl. Anesthesiology 2016; 124: 1001-1111
  • 62 Wigmore GJ, Anstey JR, St John A. et al. 20% Human Albumin Solution Fluid Bolus Administration Therapy in Patients After Cardiac Surgery (the HAS FLAIR Study). J Cardiothorac Vasc Anesth 2019; 33: 2920-2927
  • 63 Annane D, Siami S, Jaber S. et al. Effects of fluid resuscitation with colloids vs. crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 2013; 310: 1809-1817
  • 64 Finfer S, Bellomo R, Boyce N. et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 2004; 350: 2247-2256
  • 65 Caironi P, Tognoni G, Masson S. et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 2014; 370: 1412-1421
  • 66 Xu JY, Chen Q-H, Xie J-F. et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Crit Care 2014; 18: 702
  • 67 Sakr Y, Bauer M, Nierjaus A. et al. on behalf of SepNet – Critical Care Trials Group. Randomized controlled multicentre study of albumin replacement therapy in septic shock (ARISS): protocol for a randomized controlled trial. Trials 2020; 21: 1002
  • 68 He Y, Ning T, Xie T. et al. Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci U S A 2011; 108: 19078-19083
  • 69 SAFE Study Investigators. et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 2007; 357: 874-884
  • 70 Miyao H, Kotake Y. Renal Morbidity of 6% Hydroxyethyl Starch 130/0.4 in 9000 Propensity Score Matched Pairs of Surgical Patients. Anesth Analg 2020; 130: 1618-1627