CC BY-NC-ND 4.0 · Horm Metab Res 2020; 52(06): 386-393
DOI: 10.1055/a-1116-2407
Review

Salt Appetite and its Effects on Cardiovascular Risk in Primary Aldosteronism

Christian Adolf
1   Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
,
Holger Schneider
1   Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
,
Daniel A. Heinrich
1   Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
,
Laura Handgriff
1   Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
,
Martin Reincke
1   Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
› Author Affiliations
Funding Information: This work was supported by the Else Kröner-Fresenius Stiftung in support of the German Conn’s Registry-Else-Kröner Hyperaldosteronism Registry (2013_A182 and 2015_A171 to MR), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 694913 to MR), by the Deutsche Forschungsgemeinschaft (DFG) (within the CRC/Transregio 205/1 “The Adrenal: Central Relay in Health and Disease” to CA, DAH, HS and MR).

Abstract

First described in 1955 by Jerome W. Conn, primary aldosteronism (PA) today is well established as a relevant cause of secondary hypertension and accounts for about 5–10 % of hypertensives. The importance of considering PA is based on its deleterious target organ damage far beyond the effect of elevated blood pressure and on PA being a potentially curable form of hypertension. Aside the established contributory role of high dietary salt intake to arterial hypertension and cardiovascular disease, high salt intake is mandatory for aldosterone-mediated deleterious effects on target-organ damage in patients with primary aldosteronism. Consequently, counselling patients on the need to reduce salt intake represents a major component in the treatment of PA to minimize cardiovascular damage. Unfortunately, in PA patients salt intake is high and far beyond the target values of 5 g per day, recommended by the World Health Organization. Insufficient patient motivation for lifestyle interventions can be further complicated by enhancing effects of aldosterone on salt appetite, via central and gustatory pathways. In this context, treatment for PA by adrenalectomy results in a spontaneous decrease in dietary salt intake and might therefore provide further reduction of cardiovascular risk in PA than specific medical treatment alone. Furthermore, there is evidence from clinical studies that even after sufficient treatment of PA dietary salt intake remains a relevant prognostic factor for cardiovascular risk. This review will focus on the synergistic benefits derived from both blockade of aldosterone-mediated effects and reduction in dietary salt intake on cardiovascular risk.



Publication History

Received: 06 December 2019

Accepted: 28 January 2020

Article published online:
06 April 2020

© 2020. Thieme. All rights reserved.

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Cook NR, Appel LJ, Whelton PK. Lower levels of sodium intake and reduced cardiovascular risk. Circulation 2014; 129: 981-989
  • 2 Cook NR, Appel LJ, Whelton PK. Sodium intake and all-cause mortality over 20 years in the trials of hypertension prevention. J Am Coll Cardiol 2016; 68: 1609-1617
  • 3 Mills KT, Chen J, Yang W. et al. Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA 2016; 315: 2200-2210
  • 4 He FJ, MacGregor GA. Salt reduction lowers cardiovascular risk: Meta-analysis of outcome trials. Lancet 2011; 378: 380-382
  • 5 Williams B, Mancia G, Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021-3104
  • 6 [Anonymous] Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 2003; 916 i–viii. 1-149 backcover
  • 7 Powles J, Fahimi S, Micha R. et al. Global, regional and national sodium intakes in 1990 and 2010: A systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013; 3: e003733
  • 8 Brown IJ, Tzoulaki I, Candeias V. et al. Salt intakes around the world: Implications for public health. Int J Epidemiol 2009; 38: 791-813
  • 9 Mattes RD, Donnelly D. Relative contributions of dietary sodium sources. J Am Coll Nutr 1991; 10: 383-393
  • 10 He FJ, MacGregor GA. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J Hum Hypertens 2009; 23: 363-384
  • 11 Milliez P, Girerd X, Plouin PF. et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005; 45: 1243-1248
  • 12 Monticone S, D'Ascenzo F, Moretti C. et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 2018; 6: 41-50
  • 13 Monticone S, Burrello J, Tizzani D. et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 2017; 69: 1811-1820
  • 14 Rossi GP, Bernini G, Caliumi C. et al. A prospective study of the prevalence of primary aldosteronism in 1125 hypertensive patients. J Am Coll Cardiol 2006; 48: 2293-2300
  • 15 Rocha R, Rudolph AE, Frierdich GE. et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 2002; 283: H1802-H1810
  • 16 Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 1992; 120: 893-901
  • 17 Young M, Fullerton M, Dilley R. et al. Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest 1994; 93: 2578-2583
  • 18 Rocha R, Stier CT, Kifor I. et al. Aldosterone: A mediator of myocardial necrosis and renal arteriopathy. Endocrinology 2000; 141: 3871-3878
  • 19 Mente A, O'Donnell MJ, Rangarajan S. et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 2014; 371: 601-611
  • 20 O'Donnell M, Mente A, Rangarajan S. et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med 2014; 371: 612-623
  • 21 Cappuccio FP, Beer M, Strazzullo P. et al. Population dietary salt reduction and the risk of cardiovascular disease. A scientific statement from the European Salt Action Network. Nutr Metab Cardiovasc Dis 2018; 29: 107-114
  • 22 Holbrook JT, Patterson KY, Bodner JE. Sodium and potassium intake and balance in adults consuming self-selected diets. Am J Clin Nutr 1984; 40: 786-793
  • 23 Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 1985; 312: 283-289
  • 24 Meneton P, Jeunemaitre X, de Wardener HE. et al. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 2005; 85: 679-715
  • 25 Catena C, Colussi G, Novello M. et al. Dietary salt intake is a determinant of cardiac changes after treatment of primary aldosteronism: A prospective study. Hypertension 2016; 68: 204-212
  • 26 Pimenta E, Gordon RD, Ahmed AH. et al. Unilateral adrenalectomy improves urinary protein excretion but does not abolish its relationship to sodium excretion in patients with aldosterone-producing adenoma. J Hum Hypertens 2011; 25: 592-599
  • 27 Hung CS, Wu XM, Chen CW. et al. The relationship among cardiac structure, dietary salt and aldosterone in patients with primary aldosteronism. Oncotarget 2017; 8: 73187-73197
  • 28 Pimenta E, Gordon RD, Ahmed AH. et al. Cardiac dimensions are largely determined by dietary salt in patients with primary aldosteronism: Results of a case-control study. J Clin Endocrinol Metab 2011; 96: 2813-2820
  • 29 Adolf C, Heinrich DA, Holler F. et al. Patients with primary aldosteronism respond to unilateral adrenalectomy with long-term reduction in salt intake. J Clin Endocrinol Metab. 2019 DOI: 10.1210/clinem/dgz051
  • 30 Johner SA, Thamm M, Schmitz R. et al. Current daily salt intake in Germany: Biomarker-based analysis of the representative DEGS study. Eur J Nutr 2015; 54: 1109-1115
  • 31 Makhanova N, Sequeira-Lopez ML, Gomez RA. et al. Disturbed homeostasis in sodium-restricted mice heterozygous and homozygous for aldosterone synthase gene disruption. Hypertension 2006; 48: 1151-1159
  • 32 Wolf G. Effect of deoxycorticosterone on sodium appetite of intact and adrenalectomized rats. Am J Physiol 1965; 208: 1281-1285
  • 33 Weisinger RS, Woods SC. Aldosterone-elicited sodium appetite. Endocrinology 1971; 89: 538-544
  • 34 Geerling JC, Loewy AD. Aldosterone-sensitive NTS neurons are inhibited by saline ingestion during chronic mineralocorticoid treatment. Brain Res 2006; 1115: 54-64
  • 35 Vinson GP. The mislabelling of deoxycorticosterone: Making sense of corticosteroid structure and function. The Journal of endocrinology 2011; 211: 3-16
  • 36 Wolf G, Handal PJ. Aldosterone-induced sodium appetite: Dose-response and specificity. Endocrinology 1966; 78: 1120-1124
  • 37 Formenti S, Bassi M, Nakamura NB. et al. Hindbrain mineralocorticoid mechanisms on sodium appetite. Am J Physiol Regul Integr Comp Physiol 2013; 304: R252-R259
  • 38 Sakai RR, McEwen BS, Fluharty SJ. et al. The amygdala: Site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int 2000; 57: 1337-1345
  • 39 Vallon V, Huang DY, Grahammer F. et al. SGK1 as a determinant of kidney function and salt intake in response to mineralocorticoid excess. Am J Physiol Regul Integr Comp Physiol 2005; 289: R395-R401
  • 40 Francis J, Weiss RM, Wei SG. et al. Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. Am J Physiol Heart Circ Physiol 2001; 281: H2241-H2251
  • 41 Leshem M, Abutbul A, Eilon R. Exercise increases the preference for salt in humans. Appetite 1999; 32: 251-260
  • 42 Fu Y, Vallon V. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms. Nephron Physiol 2014; 128: 8-16
  • 43 Murck H. Aldosterone Action on Brain and Behavior. In: 2017; 159-179
  • 44 Funder JW. Glucocorticoid and mineralocorticoid receptors: Biology and clinical relevance. Annu Rev Med 1997; 48: 231-240
  • 45 Roland BL, Li KX, Funder JW. Hybridization histochemical localization of 11 beta-hydroxysteroid dehydrogenase type 2 in rat brain. Endocrinology 1995; 136: 4697-4700
  • 46 Qiao H, Hu B, Zhou H. et al. Aldosterone induces rapid sodium intake by a nongenomic mechanism in the nucleus tractus solitarius. Sci Rep 2016; 6: 38631
  • 47 Koneru B, Bathina CS, Cherry BH. et al. Mineralocorticoid receptor in the NTS stimulates saline intake during fourth ventricular infusions of aldosterone. Am J Physiol Regul Integr Comp Physiol 2014; 306: R61-R66
  • 48 Evans LC, Ivy JR, Wyrwoll C. et al. Conditional Deletion of Hsd11b2 in the Brain Causes Salt Appetite and Hypertension. Circulation 2016; 133: 1360-1370
  • 49 Robson AC, Leckie CM, Seckl JR. et al. 11 Beta-hydroxysteroid dehydrogenase type 2 in the postnatal and adult rat brain. Brain Res Mol Brain Res 1998; 61: 1-10
  • 50 Zhang ZH, Kang YM, Yu Y. et al. 11beta-hydroxysteroid dehydrogenase type 2 activity in hypothalamic paraventricular nucleus modulates sympathetic excitation. Hypertension 2006; 48: 127-133
  • 51 Geerling JC, Loewy AD. Central regulation of sodium appetite. Experimental physiology 2008; 93: 177-209
  • 52 Krause EG, Sakai RR. Richter and sodium appetite: From adrenalectomy to molecular biology. Appetite 2007; 49: 353-367
  • 53 Chandrashekar J, Kuhn C, Oka Y. et al. The cells and peripheral representation of sodium taste in mice. Nature 2010; 464: 297-301
  • 54 Sakamoto T, Fujii A, Saito N. et al. Alteration of amiloride-sensitive salt taste nerve responses in aldosterone/NaCl-induced hypertensive rats. Neurosci Res 2016; 108: 60-66
  • 55 Adolf C, Görge V, Heinrich D. et al. P01–06: Taste perception of salt in patients with primary aldosteronism. In. 61. Deutscher Kongress für Endokrinologie. 2018 2018.
  • 56 Blasi ER, Rocha R, Rudolph AE. et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 2003; 63: 1791-1800
  • 57 Martinez DV, Rocha R, Matsumura M. et al. Cardiac damage prevention by eplerenone: Comparison with low sodium diet or potassium loading. Hypertension 2002; 39: 614-618
  • 58 Funder JW. Primary aldosteronism and salt. Pflugers Arch 2015; 467: 587-594
  • 59 Gomez-Sanchez EP, Venkataraman MT, Thwaites D. et al. ICV infusion of corticosterone antagonizes ICV-aldosterone hypertension. Am J Physiol 1990; 258: E649-E653
  • 60 Stowasser M, Sharman J, Leano R. et al. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab 2005; 90: 5070-5076
  • 61 du Cailar G, Mimran A, Fesler P. et al. Dietary sodium and pulse pressure in normotensive and essential hypertensive subjects. J Hypertens 2004; 22: 697-703
  • 62 du Cailar G, Ribstein J, Mimran A. Dietary sodium and target organ damage in essential hypertension. Am J Hypertens 2002; 15: 222-229
  • 63 Kusche-Vihrog K, Schmitz B, Brand E. Salt controls endothelial and vascular phenotype. Pflugers Arch 2015; 467: 499-512
  • 64 Gonzalez M, Lobos L, Castillo F. et al. High-salt diet inhibits expression of angiotensin type 2 receptor in resistance arteries. Hypertension 2005; 45: 853-859
  • 65 Nickenig G, Strehlow K, Roeling J. et al. Salt induces vascular AT1 receptor overexpression in vitro and in vivo. Hypertension 1998; 31: 1272-1277
  • 66 Takeda Y, Yoneda T, Demura M. et al. Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy. Endocrinology 2000; 141: 1901-1904
  • 67 Gomez-Sanchez EP, Ahmad N, Romero DG. et al. Origin of aldosterone in the rat heart. Endocrinology 2004; 145: 4796-4802
  • 68 Ye P, Kenyon CJ, MacKenzie SM. et al. The aldosterone synthase (CYP11B2) and 11beta-hydroxylase (CYP11B1) genes are not expressed in the rat heart. Endocrinology 2005; 146: 5287-5293
  • 69 Tentori S, Messaggio E, Brioni E. et al. Endogenous ouabain and aldosterone are coelevated in the circulation of patients with essential hypertension. J Hypertens 2016; 34: 2074-2080
  • 70 Manunta P, Hamilton BP, Hamlyn JM. Salt intake and depletion increase circulating levels of endogenous ouabain in normal men. Am J Physiol Regul Integr Comp Physiol 2006; 290: R553-R559
  • 71 Kaaja RJ, Nicholls MG. Does the hormone "endogenous ouabain" exist in the human circulation?. Biofactors 2018; 44: 219-221
  • 72 Baecher S, Kroiss M, Fassnacht M. et al. No endogenous ouabain is detectable in human plasma by ultra-sensitive UPLC-MS/MS. Clin Chim Acta 2014; 431: 87-92
  • 73 Yu HC, Burrell LM, Black MJ. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation 1998; 98: 2621-2628
  • 74 Schnackenberg CG, Wilcox CS. Two-week administration of tempol attenuates both hypertension and renal excretion of 8-Iso prostaglandin f2alpha. Hypertension 1999; 33: 424-428
  • 75 Roberts LJ, Morrow JD. The generation and actions of isoprostanes. Biochim Biophys Acta 1997; 1345: 121-135
  • 76 Laffer CL, Bolterman RJ, Romero JC. Effect of salt on isoprostanes in salt-sensitive essential hypertension. Hypertension 2006; 47: 434-440
  • 77 Meng S, Roberts LJ, Cason GW. Superoxide dismutase and oxidative stress in Dahl salt-sensitive and -resistant rats. Am J Physiol Regul Integr Comp Physiol 2002; 283: R732-R738
  • 78 Kitiyakara C, Chabrashvili T, Chen Y. et al. Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J Am Soc Nephrol 2003; 14: 2775-2782
  • 79 Wilck N, Matus MG, Kearney SM. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551: 585-589
  • 80 Mell B, Jala VR, Mathew AV. et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 2015; 47: 187-197
  • 81 Durgan DJ, Ganesh BP, Cope JL. et al. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension. Hypertension 2016; 67: 469-474
  • 82 Yang T, Santisteban MM, Rodriguez V. et al. Gut dysbiosis is linked to hypertension. Hypertension 2015; 65: 1331-1340
  • 83 Agus A, Denizot J, Thevenot J. et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci Rep 2016; 6: 19032
  • 84 Kim S, Goel R, Kumar A. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 2018; 132: 701-718
  • 85 Toral M, Robles-Vera I, de la Visitacion N. et al. Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. Acta Physiol (Oxf) 2019; 227: e13285
  • 86 Yi B, Titze J, Rykova M. et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: A longitudinal study. Transl Res 2015; 166: 103-110
  • 87 Wang C, Huang Z, Yu K. et al. High-salt diet has a certain impact on protein digestion and gut microbiota: A sequencing and proteome combined study. Front Microbiol 2017; 8: 1838
  • 88 Miranda PM, De Palma G, Serkis V. et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 2018; 6: 57
  • 89 Ferguson JF, Aden LA, Barbaro NR. et al. High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 2019; 5 DOI: 10.1172/jci.insight.126241.
  • 90 Lukens JR, Gurung P, Vogel P. et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 2014; 516: 246-249
  • 91 Scher JU, Sczesnak A, Longman RS. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2013; 2: e01202
  • 92 Herrada AA, Contreras FJ, Marini NP. et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J Immunol 2010; 184: 191-202
  • 93 Amador CA, Barrientos V, Pena J. et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 2014; 63: 797-803
  • 94 Edwards CR, Stewart PM, Burt D. et al. Localisation of 11 beta-hydroxysteroid dehydrogenase--tissue specific protector of the mineralocorticoid receptor. Lancet 1988; 2: 986-989
  • 95 Funder JW, Pearce PT, Smith R. et al. Mineralocorticoid action: Target tissue specificity is enzyme, not receptor, mediated. Science 1988; 242: 583-585
  • 96 Funder JW. RALES, EPHESUS and redox. J Steroid Biochem Mol Biol 2005; 93: 121-125
  • 97 Mihailidou AS, Loan LeTY, Mardini M. et al. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension 2009; 54: 1306-1312
  • 98 Callera GE, Touyz RM, Tostes RC. et al. Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src. Hypertension 2005; 45: 773-779
  • 99 Keidar S, Kaplan M, Pavlotzky E. et al. Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: A possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone. Circulation 2004; 109: 2213-2220
  • 100 Arlt W, Lang K, Sitch AJ. et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight. 2017 2. DOI: 10.1172/jci.insight.93136
  • 101 Spath M, Korovkin S, Antke C. et al. Aldosterone- and cortisol-co-secreting adrenal tumors: the lost subtype of primary aldosteronism. Eur J Endocrinol 2011; 164: 447-455
  • 102 Yoon V, Heyliger A, Maekawa T. et al. Benign adrenal adenomas secreting excess mineralocorticoids and glucocorticoids. Endocrinol Diabetes Metab Case Rep 2013; 2013: 130042
  • 103 Tong A, Liu G, Wang F. et al. A Novel phenotype of familial hyperaldosteronism type III: Concurrence of aldosteronism and cushing's syndrome. J Clin Endocrinol Metab 2016; 101: 4290-4297
  • 104 Young MJ, Moussa L, Dilley R. et al. Early inflammatory responses in experimental cardiac hypertrophy and fibrosis: Effects of 11 beta-hydroxysteroid dehydrogenase inactivation. Endocrinology 2003; 144: 1121-1125
  • 105 Kuster GM, Kotlyar E, Rude MK. et al. Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation 2005; 111: 420-427
  • 106 Fjeld CC, Birdsong WT, Goodman RH. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100: 9202-9207
  • 107 Zhang Q, Piston DW, Goodman RH. Regulation of corepressor function by nuclear NADH. Science 2002; 295: 1895-1897
  • 108 Funder JW. Is aldosterone bad for the heart?. Trends Endocrinol Metab 2004; 15: 139-142
  • 109 Hundemer GL, Curhan GC, Yozamp N. et al. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: A retrospective cohort study. Lancet Diabetes Endocrinol 2018; 6: 51-59
  • 110 Funder JW. Primary aldosteronism and cardiovascular risk, before and after treatment. Lancet Diabetes Endocrinol 2018; 6: 5-7
  • 111 Wessler JD, Hummel SL, Maurer MS. Dietary interventions for heart failure in older adults: re-emergence of the hedonic shift. Prog Cardiovasc Dis 2014; 57: 160-167