Tierarztl Prax Ausg K Kleintiere Heimtiere 2020; 48(02): 78-88
DOI: 10.1055/a-1115-7907
Originalartikel

Aerobes Keimspektrum und Resistenzlage bei Hautläsionen von Reptilien

Aerobic bacteria from skin lesions in reptiles and their antimicrobial susceptibility
Maria Brockmann
1   LABOKLIN GmbH & Co. KG, Bad Kissingen
,
Heike Aupperle-Lellbach
1   LABOKLIN GmbH & Co. KG, Bad Kissingen
,
Elisabeth Müller
1   LABOKLIN GmbH & Co. KG, Bad Kissingen
,
Anton Heusinger
1   LABOKLIN GmbH & Co. KG, Bad Kissingen
,
Michael Pees
2   Klinik für Vögel und Reptilien, Veterinärmedizinische Fakultät der Universität Leipzig
,
Rachel E. Marschang
1   LABOKLIN GmbH & Co. KG, Bad Kissingen
› Author Affiliations

Zusammenfassung

Gegenstand und Ziel Bakterielle Hautinfektionen kommen bei Reptilien häufig vor. Obwohl viele dieser Infektionen durch multifaktorielle Probleme verursacht werden, ist eine spezifische Behandlung nötig. Ziel der Studie war, das Keimspektrum und die Resistenzlage von aeroben Bakterien in Hautläsionen von Reptilien zu untersuchen.

Material und Methoden Tupferproben dermaler Läsionen von 219 Reptilien wurden bakteriologisch untersucht (01/2017–06/2018). Die Identifizierung der Bakterien erfolgte anhand von Selektivnährböden, biochemischen Parametern sowie MALDI-TOF-MS, die Erstellung der Antibiogramme mittels Mikrodilutionsmethode.

Ergebnisse Bei den insgesamt identifizierten 306 Keimisolaten handelte es sich überwiegend um gramnegative Spezies. Pseudomonas spp. (n = 48), Citrobacter spp. (n = 31, nur bei Schildkröten), aerobe Sporenbildner (n = 30), Aeromonas spp. (n = 20), Acinetobacter spp. (n = 20), Proteus spp. (n = 15), Staphylococcus spp. (n = 15), Klebsiella spp. (n = 13), Enterococcus spp. (n = 13) sowie Morganella spp. (n = 11) machten den Hauptteil aus, daneben konnten weitere gramnegative (n = 78) und grampositive (n = 12) Bakterienspezies identifiziert werden. Mischkulturen mit 2 (n = 80) oder mehr (n = 16) Keimen traten bei 96 Tieren auf. Von 208 der 306 Isolate wurden Antibiogramme erstellt. Gegenüber Enro- (E) und Marbofloxacin (M) waren viele Isolate sensibel (minimale Hemmkonzentration [MHK] in µg/ml ≤ Grenzwert), beispielsweise Pseudomonas spp. (E: 86,4 % MHK ≤ 0,5; M: 95,5 % MHK ≤ 1), Citrobacter spp. (E: 86,4 % MHK ≤ 0,5; M: 90,9 % MHK ≤ 1) und Aeromonas spp. (E: 75,0 % MHK ≤ 0,5; M: 100 % MHK ≤ 1). Trimethoprim/Sulfamethoxazol erwies sich als wirksam gegen die meisten Citrobacter- (90,9 % MHK ≤ 2/38) und Aeromonas- (75,0 % MHK ≤ 2/38) Isolate. Amikacin war wirksam gegen fast alle Pseudomonas spp. (97,7 % MHK ≤ 16), Citrobacter spp. (95,5 % MHK ≤ 16) sowie Aeromonas spp. (93,8 % MHK ≤ 16).

Schlussfolgerung und klinische Relevanz Das Keimspektrum von Reptilienhautläsionen umfasst vor allem gramnegative Bakterien, deren klinische Relevanz für jeden Einzelfall abzuwägen ist. Viele Isolate dieser Studie waren sensibel für Fluorchinolone sowie Aminoglykoside. Da der Einsatz dieser Antibiotika zurückhaltend erfolgen sollte und gegenüber jeder getesteten Antibiotikagruppe auch resistente Isolate identifiziert wurden, wird eine Antibiogrammerstellung empfohlen.

Abstract

Objective Bacterial skin infections are common in reptiles. Although many such infections are influenced by multifactorial problems, specific treatment of bacterial infections is an important consideration. The objective of this study was to evaluate the range of aerobic bacteria in skin lesions of reptiles and to determine their antimicrobial susceptibility.

Material and methods Swabs of skin lesions from 219 reptiles were cultured for aerobic bacteria between January 2017 and June 2018. Isolates were identified based on growth on selective agar plates, biochemical parameters, as well as MALDI-TOF MS. Antibiotic susceptibility testing was carried out using the microdilution method.

Results A total of 306 isolates were identified, mostly gram-negative, including Pseudomonas spp. (n = 48), Citrobacter spp. (n = 31, only in chelonians), aerobic spore-forming bacteria (n = 30), Aeromonas spp. (n = 20), Acinetobacter spp. (n = 20), Proteus spp. (n = 15), Staphylococcus spp. (n = 15), Klebsiella spp. (n = 13), Enterococcus spp. (n = 13), Morganella spp. (n = 11) as well as 78 other gram-negative and 12 other gram-positive bacteria. Colonization with 2 (n = 80) or more (n = 16) bacterial isolates was seen in 96 animals. Antibiotic susceptibility testing was carried out with 208 of the 306 isolated bacteria. Many isolates were sensitive (minimal inhibitory concentration [MIC] in µg/ml ≤ breakpoint) to enro- (E) and marbofloxacin (M): 86.4 % MIC ≤ 0.5 (E) and 95.5 % MIC ≤ 1 (M) for Pseudomonas spp., 86.4 % MIC ≤ 0.5 (E) and 90.9 % MIC ≤ 1 (M) for Citrobacter spp., 75.0 % MIC ≤ 0.5 (E) and 100 % MIC ≤ 1 (M) for Aeromonas spp. Trimethoprim/sulfamethoxazol proved to be effective against most of the Citrobacter spp. (90.9 % MIC ≤ 2/38) and Aeromonas spp. (75.0 % MIC ≤ 2/38). Amikacin was effective against nearly all Pseudomonas spp. (97.7 % MIC ≤ 16), Citrobacter spp. (95.5 % MIC ≤ 16) and Aeromonas spp. (93.8 % MIC ≤ 16).

Conclusion and clinical relevance The majority of isolates were gram-negative; the clinical relevance of individual isolates must, however, be evaluated on a case by case basis. Many of the isolated bacteria were sensitive to fluoroquinolones as well as aminoglycosides. Susceptibility testing is recommended since use of these antibiotics should be limited and for every tested group of antibiotics resistant isolates were found.



Publication History

Received: 08 July 2019

Accepted: 30 September 2019

Article published online:
23 April 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Hoppmann E, Barron HW. Dermatology in Reptiles. J Exot Pet Med 2007; 16 (04) 210-224 doi:10.1053/j.jepm.2007.10.001
  • 2 Marschang RE. Viruses infecting reptiles. Viruses 2011; 3 (11) 2087-2126 doi:10.3390/v3112087
  • 3 Stöhr AC, Blahak S, Heckers KO. et al. Ranavirus infections associated with skin lesions in lizards. Vet Res 2013; 44 (01) 84 doi:10.1186/1297–9716–44–84
  • 4 Sigler L, Hambleton S, Paré JA. Molecular characterization of reptile pathogens currently known as members of the chrysosporium anamorph of Nannizziopsis vriesii complex and relationship with some human-associated isolates. J Clin Microbiol 2013; 51 (10) 3338-3357 doi:10.1128/JCM.01465–13
  • 5 Aleksić-Kovačević S, Ozvegy J, Krstić N. et al. Skin and skeletal system lesions of european pond turtles (Emys orbicularis) from natural habitats. Acta Vet Hung 2014; 62 (02) 180-193 doi:10.1556/AVet.2013.060
  • 6 White SD, Bourdeau P, Bruet V. et al. Reptiles with dermatological lesions: a retrospective study of 301 cases at two university veterinary teaching hospitals (1992–2008). Vet Dermatol 2011; 22 (02) 150-161 doi:10.1111/j.1365–3164.2010.00926.x
  • 7 Lukac M, Horvatek-Tomic D, Prukner-Radovcic E. Findings of Devriesea agamarum associated Infections in Spiny-tailed lizards (Uromastyx sp.) in Croatia. J Zoo Wildl Med 2013; 44 (02) 430-434 doi: 10.1638/2012–0100R.1
  • 8 Martel A, Pasmans F, Hellebuyck T. et al. Devriesea agamarum gen. nov., sp. nov., a novel actinobacterium associated with dermatitis and septicaemia in agamid lizards. Int J Syst Evol Microbiol 2008; 58 (09) 2206-2209 doi:10.1099/ijs.0.65478–0
  • 9 Hellebuyck T, Martel A, Chiers K. et al. Devriesea agamarum causes dermatitis in bearded dragons (Pogona vitticeps). Vet Microbiol 2009; 134 (03/04) 267-271 doi:10.1016/j.vetmic.2008.08.021
  • 10 Hill AJ, Leys JE, Bryan D. et al. Common Cutaneous Bacteria Isolated from Snakes Inhibit Growth of Ophidiomyces ophiodiicola. Ecohealth 2018; 15 (01) 109-120 doi:10.1007/s10393–017–1289-y
  • 11 Pasmans F, Blahak S, Martel A. et al. Introducing reptiles into a captive collection: the role of the veterinarian. Vet J 2008; 175 (01) 53-68 doi:10.1016/j.tvjl.2006.12.009
  • 12 Hatt J-M. Dermatologische Erkrankungen bei Reptilien. Schweiz Arch Tierheilkd 2010; 152 (03) 123-130 doi:10.1024/0036–7281/a000030
  • 13 Rosskopf WJ, Shindo MK. Syndromes and Conditions of Commonly Kept Tortoise and Turtle Species. Semin Avian Exotic Pet Med 2003; 12 (03) 149-161 doi:10.1053/saep.2003.00022–7
  • 14 Negrini J, Ginel PJ, Novales M. et al. Clinical and histological findings of cutaneous wound healing in the red-eared slider turtle (Trachemys scripta elegans) housed in unheated outdoor enclosures. Vet Dermatol 2016; 27 (05) 413-e106 doi:10.1111/vde.12346
  • 15 Muntean D, Horhat F-G, Bădiţoiu L. et al. Multidrug-Resistant Gram-Negative Bacilli: A Retrospective Study of Trends in a Tertiary Healthcare Unit. Medicina (Kaunas). 2018 54. (6) DOI: 10.3390/medicina54060092
  • 16 Wimalasena SHMP, Shin G-W, Hossain S. et al. Potential enterotoxicity and antimicrobial resistance pattern of Aeromonas species isolated from pet turtles and their environment. J Vet Med Sci 2017; 79 (05) 921-926 doi:10.1292/jvms.16–0493
  • 17 Ahasan MS, Picard J, Elliott L. et al. Evidence of antibiotic resistance in Enterobacteriales isolated from green sea turtles, Chelonia mydas on the Great Barrier Reef. Mar Pollut Bull 2017; 120 (01/02) 18-27 doi:10.1016/j.marpolbul.2017.04.046
  • 18 Clinical & Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed.. CLSI supplement M100 Wayne, PA: CLSI; 2018
  • 19 European Committee on Antimicrobial Susceptibility Testing. EUCAST . Expert Rules V3.1. Intrinsic Resistance and Exceptional Phenotypes Tables. EUCAST; 2016
  • 20 Société Française de Microbiologie. Recommandations 2019 V.1.0. Comité de l’antibiogramme de la Société Française de Microbiologie; 2019
  • 21 Ruzauskas M, Misyte S, Vaskeviciute L. et al. Gut microbiota isolated from the European pond turtle (Emys orbicularis) and its antimicrobial resistance. Pol J Vet Sci 2016; 19 (04) 723-730 doi:10.1515/pjvs-2016–0091
  • 22 Unger F, Eisenberg T, Prenger-Berninghoff E. et al. Imported reptiles as a risk factor for the global distribution of Escherichia coli harbouring the colistin resistance gene mcr-1. Int J Antimicrob Agents 2017; 49 (01) 122-123 doi:10.1016/j.ijantimicag.2016.10.007
  • 23 Clinical & Laboratory Standards Institute. Generation, Presentation, and Application of Antimicrobial Susceptibility Test Data for Bacteria of Animal Origin; A Report. CLSI document VET05-R Wayne, PA: CLSI; 2011
  • 24 Clinical & Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. 3rd ed.. CLSI supplement VET01S Wayne, PA: CLSI; 2015
  • 25 Leading pets in the UK 2018, by household ownership | Survey. https://www.statista.com/statistics/308218/leading-ten-pets-ranked-by-household-ownership-in-the-united-kingdom-uk/ Stand: 18.04.2019
  • 26 Musgrave KE, Mans C. Retrospective Evaluation of Bacterial Isolates from Clinically Ill Chelonians: 155 Cases. J Herpetol Med Surg 2019; 29 (01/02) 49-52 doi:10.5818/18–01–140.1
  • 27 Cushing A, Pinborough M, Stanford M. Review of bacterial and fungal culture and sensitivity results from reptilian samples submitted to a UK laboratory. Vet Rec 2011; 169 (15) 390 doi:10.1136/vr.d4636
  • 28 Oliveira M, Serrano I, Santos JP. et al. Pseudomonads from wild free-living sea turtles in Príncipe Island, Gulf of Guinea. Ecol Indic 2017; 81: 260-264 doi:10.1016/j.ecolind.2017.06.005
  • 29 Plenz B, Schmidt V, Grosse-Herrenthey A. et al. Characterisation of the aerobic bacterial flora of boid snakes: application of MALDI-TOF mass spectrometry. Vet Rec 2015; 176 (11) 285 doi:10.1136/vr.102580
  • 30 Pees M, Schmidt V, Krautwald-Junghanns M-E. Häufige respiratorische Erkrankungen bei Schlangen und Schildkröten. Symptome Ursache und Diagnostik. Tierarztl Prax Ausg K Kleintiere Heimtiere 2007; 35: 222-229 doi:10.1055/s-0038–1622622
  • 31 Blaylock R. Normal oral bacterial flora from some southern African snakes. Onderstepoort J Vet Res 2001; 68 (03) 175-182
  • 32 Høiby N, Bjarnsholt T, Givskov M. et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35 (04) 322-332 doi:10.1016/j.ijantimicag.2009.12.011
  • 33 Rudack C, Eikenbusch G, Stoll W. et al. Therapeutisches Management nekrotisierender Weichteilinfektionen des Halses. HNO 2003; 51 (12) 986-992 doi:10.1007/s00106–003–0854–6
  • 34 Zalavras CG, Patzakis MJ, Holtom P. Local Antibiotic Therapy in the Treatment of Open Fractures and Osteomyelitis. Clin Orthop Rel Res 2004; 427: 86-93 doi:10.1097/01.blo.0000143571.18892.8d
  • 35 Helmick KE, Papich MG, Vliet KA. et al. Pharmacokinetics of enrofloxacin after single-dose oral and intravenous administration in the American alligator (Alligator mississippiensis). J Zoo Wildl Med 2004; 35 (03) 333-340 doi:10.1638/03–002
  • 36 Thuesen LR, Bertelsen MF, Brimer L. et al. Selected pharmacokinetic parameters for Cefovecin in hens and green iguanas. J Vet Pharmacol Ther 2009; 32 (06) 613-617 doi:10.1111/j.1365–2885.2009.01083.x
  • 37 VETIDATA. Veterinärmedizinischer Informationsdienst für Arzneimittelanwendung, Toxikologie und Arzneimittelrecht, geprüft September 2019. Im Internet: www.vetidata.de
  • 38 Mader Douglas R. ed. Reptile Medicine and Surgery. 2nd  ed.. St. Louis, Mo.: Saunders Elsevier; 2006: 1074
  • 39 World Health Organization. Highest Priority Critically Important Antimicrobials. https://www.who.int/foodsafety/cia/en/ Stand: 25.03.2019
  • 40 Mendoza SA. Nephrotoxic drugs. Pediatr Nephrol 1988; 2 (04) 466-476 doi:10.1007/BF00853443
  • 41 Sykes JM, Greenacre CB. Techniques for Drug Delivery in Reptiles and Amphibians. J Exot Pet Med 2006; 15 (03) 210-217 doi:10.1053/j.jepm.2006.06.007