Informationen aus Orthodontie & Kieferorthopädie 2020; 52(02): 98-104
DOI: 10.1055/a-1108-6725
Übersichtsartikel

Die Bedeutung des extrathorakalen Luftraumes für die Kieferorthopädie

The Relevance of the Posterior Airway Space for Orthodontics
Jan Hourfar
1   Klinik für Kieferorthopädie, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Gero Kinzinger
1   Klinik für Kieferorthopädie, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Jörg A. Lisson
1   Klinik für Kieferorthopädie, Universitätsklinikum des Saarlandes, Homburg/Saar
› Institutsangaben

Zusammenfassung

Der „Extrathorakale Luftraum“ findet im klinischen Alltag des Kieferorthopäden sowohl bei der Fallplanung als auch bei der Therapie kaum Beachtung. Ziel dieses Beitrages ist es deshalb, Anatomie, Historie, unterschiedliche Definitionen, bildgebende Verfahren sowie Simulationstechniken des extrathorakalen Luftraumes darzustellen. Ohne kritische Aspekte zu vernachlässigen, werden therapeutische Maßnahmen mit möglichen Auswirkungen auf den extrathorakalen Luftraum, ausgewählte Studienergebnisse sowie interdisziplinäre Implikationen aufgezeigt, auch um die Relevanz des Themas für den Kliniker hervorzuheben.

Abstract

The „Posterior Airway Space“ attracts little attention in the orthodontist’s clinical routine during treatment planning and therapy. Hence, the aim of this review is to present anatomy, history, differing definitions, imaging modalities as well as computer simulations of the posterior airway space. Without disregarding critical aspects, this review presents different treatment approaches with possible effects on the posterior airway space. Study results of some relevant publications are pointed out and interdisciplinary implications are discussed to highlight the topic’s relevance to the orthodontist.



Publikationsverlauf

Artikel online veröffentlicht:
17. Juni 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Hinz R, Grabowski R, Stahl de Castrillon F. Das kieferorthopädische Risikokind: Gebissentwicklung und Funktionsstörungen – KFO-Prävention und Frühbehandlung. Zahnärztlicher Fach-Verlag (zfv), Herne, Deutschland. 2009
  • 2 Hofrath H. Die Bedeutung von Röntgenfern- und Abstandsaufnahme für die Diagnostik der Kieferanomalien. Fortschr Orthodont 1931; 1: 232-243
  • 3 Broadbent BH. A New X-Ray Technique and its Application to Orthodontia. Angle Orthod 1931; 1: 45-66
  • 4 Hans MG, Palomo JM, Valiathan M. History of imaging in orthodontics from Broadbent to cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2015; 148: 914-921
  • 5 Subtelny JD. Width of the nasopharynx and related anatomic structures in normal and unoperated cleft palate children. Am J Orthod Dentofacial Orthop 1955; 41: 889-909
  • 6 Riley R, Guilleminault C, Herran J. et al. Cephalometric analyses and flow-volume loops in obstructive sleep apnea patients. Sleep 1983; 6: 303-311
  • 7 Fransson AM, Tegelberg A, Svenson BA. et al. Influence of mandibular protruding device on airway passages and dentofacial characteristics in obstructive sleep apnea and snoring. Am J Orthod Dentofacial Orthop 2002; 122: 371-379
  • 8 Kinzinger G, Czapka K, Ludwig B. et al. Effects of fixed appliances in correcting Angle Class II on the depth of the posterior airway space: FMA vs. Herbst appliance – a retrospective cephalometric study. J Orofac Orthop 2011; 72: 301-320
  • 9 Hourfar J, Kinzinger GSM, Feifel H. et al. Effects of combined orthodontic-orthognathic treatment for class II and III correction on posterior airway space : Comparison of mono- and bignathic osteotomies. J Orofac Orthop 2017; 78: 455-465
  • 10 Hourfar J, Kinzinger GS, Meissner LK. et al. Effects of two different removable functional appliances on depth of the posterior airway space : A retrospective cephalometric study. J Orofac Orthop 2017; 78: 166-175
  • 11 Zheng ZH, Yamaguchi T, Kurihara A. et al. Three-dimensional evaluation of upper airway in patients with different anteroposterior skeletal patterns. Orthod Craniofac Res 2014; 17: 38-48
  • 12 Alhammadi MS, Elfeky HY, Fayed MS. et al. Three-dimensional skeletal and pharyngeal airway changes following therapy with functional appliances in growing skeletal Class II malocclusion patients : A controlled clinical trial. J Orofac Orthop 2019; 80: 254-265
  • 13 Romulo de Medeiros J, Ferraro Bezerra M, Gurgel Costa FW. et al. Does pterygomaxillary disjunction in surgically assisted rapid maxillary expansion influence upper airway volume? A prospective study using Dolphin Imaging 3D. Int J Oral Maxillofac Surg 2017; 46: 1094-1101
  • 14 Gu M, Savoldi F, Hagg U et al. Upper Airway Changes following Functional Treatment with the Headgear Herbst or Headgear Twin Block Appliance Assessed on Lateral Cephalograms and Magnetic Resonance Imaging. ScientificWorldJournal 2019; 25: Article ID 1807257, 8 pages, doi: 10.1155/2019/1807257
  • 15 Eslami E, Katz ES, Baghdady M. et al. Are three-dimensional airway evaluations obtained through computed and cone-beam computed tomography scans predictable from lateral cephalograms? A systematic review of evidence. Angle Orthod 2017; 87: 159-167
  • 16 Xiong H, Huang X, Li Y et al. A Method for Accurate Reconstructions of the Upper Airway Using Magnetic Resonance Images. PLoS One 2015; 10
  • 17 Sittitavornwong S, Waite PD, Shih AM. et al. Computational fluid dynamic analysis of the posterior airway space after maxillomandibular advancement for obstructive sleep apnea syndrome. J Oral Maxillofac Surg 2013; 71: 1397-1405
  • 18 Bates AJ, Schuh A, Amine-Eddine G. et al. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin Biomech 2019; 66: 88-96
  • 19 Thereza-Bussolaro C, Oh HS, Lagravere M. et al. Pharyngeal dimensional changes in class II malocclusion treatment when using Forsus(R) or intermaxillary elastics – An exploratory study. Int Orthod 2019; 17: 667-677
  • 20 Kirjavainen M, Kirjavainen T. Upper airway dimensions in Class II malocclusion. Effects of headgear treatment. Angle Orthod 2007; 77: 1046-1053
  • 21 Baccetti T, Franchi L, Mucedero M. et al. Treatment and post-treatment effects of facemask therapy on the sagittal pharyngeal dimensions in Class III subjects. Eur J Orthod 2010; 32: 346-350
  • 22 Pliska BT, Tam IT, Lowe AA. et al. Effect of orthodontic treatment on the upper airway volume in adults. Am J Orthod Dentofacial Orthop 2016; 150: 937-944
  • 23 Kavand G, Lagravere M, Kula K. et al. Retrospective CBCT analysis of airway volume changes after bone-borne vs tooth-borne rapid maxillary expansion. Angle Orthod 2019; 89: 566-574
  • 24 Graf I, Schumann U, Neuschulz J. et al. Sleep-disordered breathing in orthodontic practice: Prevalence of snoring in children and morphological findings. J Orofac Orthop 2016; 77: 129-137
  • 25 Rose EC, Germann M, Sorichter S. et al. Case control study in the treatment of obstructive sleep-disordered breathing with an intraoral protrusive appliance. J Orofac Orthop 2004; 65: 489-500
  • 26 Ulusoy C, Canigur Bavbek N, Tuncer BB. et al. Evaluation of airway dimensions and changes in hyoid bone position following class II functional therapy with activator. Acta Odontol Scand 2014; 72: 917-925
  • 27 Ruckschloss T, Ristow O, Berger M. et al. Relations between mandible-only advancement surgery, the extent of the posterior airway space, and the position of the hyoid bone in Class II patients: a three-dimensional analysis. Br J Oral Maxillofac Surg 2019; 57: 1032-1038
  • 28 Hwang DM, Lee JY, Choi YJ. et al. Evaluations of the tongue and hyoid bone positions and pharyngeal airway dimensions after maxillary protraction treatment. Cranio 2019; 37: 214-222
  • 29 Riepponen A, Myllykangas R, Savolainen J. et al. Changes in posterior airway space and hyoid bone position after surgical mandibular advancement. Acta Odontol Scand 2017; 75: 73-78
  • 30 Balakrishna R, Reddy M, Kashyap VM. et al. The “Rubber Band” and “Slingshot” Effects of the Posterior Airway Space in Mandibular Orthognathic Surgeries. J Maxillofac Oral Surg 2014; 13: 514-518
  • 31 Antosz M. CBCT volumetric analyses have no value in assessing functional airway. Am J Orthod Dentofacial Orthop 2015; 147: 10-11
  • 32 Lin X. Correlation study of increase of pharyngeal airway space after mandibular advancement, taking natural head position into consideration. Br J Oral Maxillofac Surg 2019; 57: 760-764
  • 33 Moze G, Seehra J, Fanshawe T. et al. In vitro comparison of contemporary radiographic imaging techniques for measurement of tooth length: reliability and radiation dose. J Orthod 2013; 40: 225-233
  • 34 Eastman TR. ALARA and digital imaging systems. Radiol Technol 2013; 84: 297-298
  • 35 Crosby T, Phillips J, Carbo A. et al. Use of modified barium swallow study to measure posterior airway space in obstructive sleep apnea. Acta Otolaryngol 2016; 136: 592-597
  • 36 Vizzotto MB, Liedke GS, Delamare EL. et al. A comparative study of lateral cephalograms and cone-beam computed tomographic images in upper airway assessment. Eur J Orthod 2012; 34: 390-393
  • 37 Proffit WR, Fields HW, Sarver DM. Contemporary Orthodontics. Elsevier; Oxford: 2007
  • 38 (DGSM) DGfSS S3-Leitlinie Nicht erholsamerSchlaf/Schlafstörungen – Kapitel „SchlafbezogeneAtmungsstörungen“. Somnologie 2017; Suppl s2: S97–S180