Aktuelle Rheumatologie 2020; 45(05): 467-474
DOI: 10.1055/a-1099-9028
Original Article

IL-23 induces the expression of pro-osteogenic factors in osteoclasts

IL-23 induziert die Expression pro-osteogener Faktoren in Osteoklasten
Dan-Dan Pang
1   Department of Rheumatology & Immunology, Changhai Hospital, Second Military Medical University, Shanghai, China
2   Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
,
Li Cai
2   Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
,
Jing-Ru Zhang
1   Department of Rheumatology & Immunology, Changhai Hospital, Second Military Medical University, Shanghai, China
3   Department of Rheumatology & Immunology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
,
Sheng-Ming Dai
2   Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
› Author Affiliations
Funding S.M. Dai was supported by a grant from National Natural Science Foundation of China (No. 81471604) and a grant from National Key Basic Research Program of China (2014CB541804).

Abstract

Background The mechanism for the new bone formation in ankylosing spondylitis (AS) is still unclear. Although it has been demonstrated that IL-23 plays a pivotal role in the pathophysiology of AS, IL-23 has no direct effects on osteoblasts but modulates the function of osteoclasts.

Aims To explore whether IL-23 indirectly facilitates new bone formation through osteoclasts in AS, here we analyzed whether IL-23 enhances the expression levels of pro-osteogenic factors by osteoclasts.

Methods Mononuclear cells were harvested from mouse bone marrow and cultured in the presence of M-CSF (50 ng/ml) and RANKL (30 ng/ml) to trigger the production of osteoclasts. Protein and mRNA expression levels of Semaphorin 4D, Ephrin B2, BMP2, BMP6, SPHK1, HtrA1 and Wnt10b were measured using Western blot and qRT-PCR.

Results Primary mononuclear cells were transformed into osteoclasts with RANKL and M-CSF. The increased expression of NFATc1 and TRAP together with TRAP staining of>3 nuclei were used to identify mature osteoclasts. The mRNA expression levels of BMP2, Ephrin B2 and SPHK1 were enhanced by 1.46, 2.1 and 2.46 folds after exposure to IL-23. Confirmation of increased levels of Ephrin B2 and SPHK1 in IL-23-stimulated osteoclasts was provided by Western blot analysis. IL-23 had no effects on the expression of BMP6 or Wnt10b, or on the anti-osteogenic factors Semaphorin 4D or HtrA1.

Conclusions IL-23 induces osteoclasts to express pro-osteogenic factors rather than anti-osteogenic factors, suggesting IL-23 might indirectly promote the differentiation of osteoblasts through activated osteoclasts in ankylosing spondylitis.

Zusammenfassung

Hintergrund Der Mechanismus der Knochenneubildung bei ankylosierender Spondylitis (AS) ist nach wie vor unklar. Es wurde zwar nachgewiesen, dass IL-23 in der Pathophysiologie von AS eine zentrale Rolle spielt, doch IL-23 hat keine direkten Auswirkungen auf Osteoblasten, sondern moduliert die Funktion von Osteoklasten.

Ziele Es sollte untersucht werden, ob IL-23 bei AS indirekt eine Knochenneubildung durch Osteoklasten begünstigt. In diesem Zusammenhang wurde analysiert, ob IL-23 die Expressionsniveaus pro-osteogener Faktoren durch Osteoklasten steigert.

Methoden Es wurden mononukleäre Zellen aus dem Knochenmark von Mäusen gewonnen, die zur Auslösung der Produktion von Osteoklasten in Gegenwart von M-CSF (50 ng/ml) und RANKL (30 ng/ml) kultiviert wurden. Mithilfe von Western-Blots und qRT-PCR wurden die Protein- und mRNA-Expressionsniveaus von Semaphorin 4D, Ephrin B2, BMP2, BMP6, SPHK1, HtrA1 und Wnt10b gemessen.

Ergebnisse Primäre mononukleäre Zellen wurden mithilfe von RANKL und M-CSF in Osteoklasten umgewandelt. Die Identifikation reifer Osteoklasten erfolgte anhand der erhöhten Expression von NFATc1 und TRAP zusammen mit dem Nachweis von mehr als 3 Zellkernen in der TRAP-Färbung. Die mRNA-Expressionsniveaus von BMP2, Ephrin B2 und SPHK1 waren nach Exposition gegenüber IL-23 um das 1,46-, 2,1- und 2,46-Fache erhöht. Die Bestätigung der erhöhten Konzentration von Ephrin B2 und SPHK1 in IL-23-stimulierten Osteoklasten erfolgte durch Western-Blot-Analyse. IL-23 hatte keine Auswirkungen auf die Expression von BMP6 oder Wnt10b oder auf die anti-osteogenen Faktoren Semaphorin 4D oder HtrA1.

Schlussfolgerungen IL-23 induziert Osteoklasten eher zur Expression pro-osteogener als anti-osteogener Faktoren, was darauf schließen lässt, dass IL-23 bei ankylosierender Spondylitis durch aktivierte Osteoklasten die Differenzierung von Osteoblasten fördern könnte.



Publication History

Article published online:
11 February 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Xiang YJ, Dai SM. Prevalence of rheumatic diseases and disability in China. Rheumatol Int 2009; 29: 481-490
  • 2 Lories RJ, Schett G. Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum Dis Clin North Am 2012; 38: 555-567
  • 3 Tam LS, Gu J, Yu D. Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol 2010; 6: 399-405
  • 4 Ramiro S, van Tubergen A, van der Heijde D. et al. Brief report: erosions and sclerosis on radiographs precede the subsequent development of syndesmophytes at the same site: a twelve-year prospective followup of patients with ankylosing spondylitis. Arthritis Rheumatol 2014; 66: 2773-2779
  • 5 Layh-Schmitt G, Colbert RA. The interleukin-23/interleukin-17 axis in spondyloarthritis. Curr Opin Rheumatol 2008; 20: 392-397
  • 6 Sherlock JP, Buckley CD, Cua DJ. The critical role of interleukin-23 in spondyloarthropathy. Mol Immunol 2014; 57: 38-43
  • 7 Mei Y, Pan F, Gao J. et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol 2011; 30: 269-273
  • 8 Romero-Sanchez C, Jaimes DA, Londono J. et al. Association between Th-17 cytokine profile and clinical features in patients with spondyloarthritis. Clin Exp Rheumatol 2011; 29: 828-834
  • 9 Ciccia F, Accardo-Palumbo A, Rizzo A. et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis 2014; 73: 1566-1574
  • 10 Zeng L, Lindstrom MJ, Smith JA. Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide without induction of a significant unfolded protein response. Arthritis Rheum 2011; 63: 3807-3817
  • 11 DeLay ML, Turner MJ, Klenk EI. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 2009; 60: 2633-2643
  • 12 Ruutu M, Thomas G, Steck R. et al. Beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum 2012; 64: 2211-2222
  • 13 Sherlock JP, Joyce-Shaikh B, Turner SP. et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+CD3+CD4-CD8- entheseal resident T cells. Nat Med 2012; 18: 1069-1076
  • 14 Park JH, Lee NK, Lee SY. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol Cells 2017; 40: 706-713
  • 15 Chen L, Wei XQ, Evans B. et al. IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol 2008; 38: 2845-2854
  • 16 Ju JH, Cho ML, Moon YM. et al. IL-23 induces receptor activator of NF-kappaB ligand expression on CD4+T cells and promotes osteoclastogenesis in an autoimmune arthritis model. J Immunol 2008; 181: 1507-1518
  • 17 Quinn JM, Sims NA, Saleh H. et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J Immunol 2008; 181: 5720-5729
  • 18 Yago T, Nanke Y, Kawamoto M. et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 2007; 9: R96
  • 19 Kamiya S, Nakamura C, Fukawa T. et al. Effects of IL-23 and IL-27 on osteoblasts and osteoclasts: inhibitory effects on osteoclast differentiation. J Bone Miner Metab 2007; 25: 277-285
  • 20 Zhang JR, Pang DD, Tong Q. et al. Different modulatory effects of IL-17, IL-22, and IL-23 on osteoblast differentiation. Mediators Inflamm 2017; 5950395
  • 21 Kular J, Tickner J, Chim SM. et al. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 2012; 45: 863-873
  • 22 Chambers TJ. Regulation of the differentiation and function of osteoclasts. J Pathol 2000; 192: 4-13
  • 23 Hsu H, Lacey DL, Dunstan CR. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 1999; 96: 3540-3545
  • 24 Razawy W, van Driel M, Lubberts E. The role of IL-23 receptor signaling in inflammation-mediated erosive autoimmune arthritis and bone remodeling. Eur J Immunol 2018; 48: 220-229
  • 25 Suzuki E, Mellins ED, Gershwin ME. et al. The IL-23/IL-17 axis in psoriatic arthritis. Autoimmun Rev 2014; 13: 496-502
  • 26 Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 2005; 11: 76-81
  • 27 Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol 2004; 19: 1325-1344
  • 28 Lieben L. Bone: Direct contact between mature osteoblasts and osteoclasts. Nat Rev Rheumatol 2018; Feb 15; DOI: 10.1038/nrrheum.2018.16. [Epub ahead of print].
  • 29 Florencio-Silva R, Sasso GR, Sasso-Cerri E. et al. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int 2015; 421746
  • 30 Takayanagi H, Kim S, Koga T. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3: 889-901
  • 31 Li J, Sarosi I, Yan XQ. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000; 97: 1566-1571
  • 32 Kong YY, Yoshida H, Sarosi I. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315-323
  • 33 Wu X, Chim SM, Kuek V. et al. HtrA1 is upregulated during RANKL-induced osteoclastogenesis, and negatively regulates osteoblast differentiation and BMP2-induced Smad1/5/8, ERK and p38 phosphorylation. Febs Lett 2014; 588: 143-150
  • 34 Martin TJ, Allan EH, Ho PW. et al. Communication between ephrinB2 and EphB4 within the osteoblast lineage. Adv Exp Med Biol 2010; 658: 51-60
  • 35 Zhao C, Irie N, Takada Y. et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 2006; 4: 111-121
  • 36 Negishi-Koga T, Shinohara M, Komatsu N. et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 2011; 17: 1473-1480
  • 37 Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 2011; 112: 3491-3501
  • 38 Matsuo K, Otaki N. Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases. Cell Adhes Migr 2012; 6: 148-156
  • 39 Ishii M, Egen JG, Klauschen F. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009; 458: 524-528
  • 40 Meshcheryakova A, Mechtcheriakova D, Pietschmann P. Sphingosine 1-phosphate signaling in bone remodeling: multifaceted roles and therapeutic potential. Expert Opin Ther Tar 2017; 21: 725-737
  • 41 Sieper J, Poddubnyy D, Miossec P. The IL-23–IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat Rev Rheumatol 2019; 15: 747-757