Frauenheilkunde up2date 2021; 15(01): 43-61
DOI: 10.1055/a-1098-0234
Gynäkologische Onkologie

Reproduktive Faktoren und das Ovarialkarzinomrisiko

Susanne Schüler-Toprak
,
Olaf Ortmann

Trotz intensiver wissenschaftlicher Bemühungen handelt es sich beim Ovarialkarzinom um das gynäkologische Malignom mit der höchsten Mortalität. Parität, Laktation, aber auch das Alter bei Menarche und Menopause beeinflussen das Risiko, an einem Ovarialkarzinom zu erkranken. Dieser Artikel vermittelt einen Überblick über den Einfluss dieser reproduktiven Faktoren auf das Ovarialkarzinomrisiko entsprechend dem aktuellen Stand der Wissenschaft.

Kernaussagen
  • Beim Ovarialkarzinom handelt es sich um eine heterogene Erkrankung. Man unterteilt in Typ-I- und Typ-II-Karzinome, die sich sowohl in ihrer Entstehung als auch in ihrem Verhalten deutlich voneinander unterscheiden.

  • Auch die verschiedenen histologischen Subtypen wiesen eine unterschiedliche Karzinogenese auf. Leider wird in den bisherigen Arbeiten darauf und auf die Konsequenzen, die sich für die Therapie der Erkrankung ergeben, noch viel zu wenig eingegangen.

  • Das Ovarialkarzinom ist ein endokrin beeinflusster Tumor. Auch hier ist davon auszugehen, dass der Einfluss reproduktiver Faktoren auf die Entstehung der Malignome sich in den einzelnen histologischen Subgruppen deutlich voneinander unterscheidet. Allerdings war bislang die Beurteilung aufgrund oftmals kleiner Fallzahlen eingeschränkt. In zukünftigen Arbeiten wird man ein besonderes Augenmerk darauf legen müssen.

  • Verschiedene Hypothesen versuchen, das Verständnis für die Entstehung von Ovarialkarzinomen und den Einfluss reproduktiver Faktoren zu verbessern: Die Ovulationshypothese, die Gonadotropinhypothese und die Androgen-/Progesteronhypothese.

  • Eine späte Menarche und frühe Menopause reduzieren das Risiko für ein Ovarialkarzinom.

  • Den stärksten protektiven Effekt unter den reproduktiven Faktoren bewirkt Parität.

  • Auch Laktation mindert das Risiko, an einem Ovarialkarzinom zu erkranken.

  • Infertilität erhöht das Ovarialkarzinomrisiko. Allerdings handelt es sich hierbei um ein sehr heterogenes Krankheitsbild. Eine Beurteilung der verschiedenen Infertilitätsursachen ist sicherlich unabdingbar.



Publication History

Article published online:
10 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Deutsche Krebsgesellschaft DK, AWMF. Leitlinienprogramm Onkologie. S3-Leitlinie Diagnostik, Therapie und Nachsorge maligner Ovarialtumoren. Im Internet (Stand: 02.05.2020): https://www.leitlinienprogramm-onkologie.de/leitlinien/ovarialkarzinom/
  • 2 Kurman RJ, Shih Ie M. The dualistic model of ovarian carcinogenesis: Revisited, revised, and expanded. Am J Pathol 2016; 186: 733-747
  • 3 Shvartsman HS, Sun CC, Bodurka DC. et al. Comparison of the clinical behavior of newly diagnosed stages II–IV low-grade serous carcinoma of the ovary with that of serous ovarian tumors of low malignant potential that recur as low-grade serous carcinoma. Gynecol Oncol 2007; 105: 625-629
  • 4 Grisham RN, Iyer G, Garg K. et al. BRAF mutation is associated with early stage disease and improved outcome in patients with low-grade serous ovarian cancer. Cancer 2013; 119: 548-554
  • 5 Langdon SP, Gourley C, Gabra H. et al. Endocrine therapy in epithelial ovarian cancer. Expert Rev Anticancer Ther 2017; 17: 109-117
  • 6 Sieh W, Kobel M, Longacre TA. et al. Hormone-receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study. Lancet Oncol 2013; 14: 853-862
  • 7 Gershenson DM, Bodurka DC, Coleman RL. et al. Hormonal maintenance therapy for women with low-grade serous cancer of the ovary or peritoneum. J Clin Oncol 2017; 35: 1103-1111
  • 8 Vang R, Levine DA, Soslow RA. et al. Molecular alterations of tp53 are a defining feature of ovarian high-grade serous carcinoma: A rereview of cases lacking tp53 mutations in The Cancer Genome Atlas Ovarian Study. Int J Gynecol Pathol 2016; 35: 48-55
  • 9 [Anonym] Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609-615
  • 10 Hart WR. Mucinous tumors of the ovary: a review. Int J Gynecol Pathol 2005; 24: 4-25
  • 11 Mok SC, Bell DA, Knapp RC. et al. Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res 1993; 53: 1489-1492
  • 12 Wu CH, Mao TL, Vang R. et al. Endocervical-type mucinous borderline tumors are related to endometrioid tumors based on mutation and loss of expression of ARID1A. Int J Gynecol Pathol 2012; 31: 297-303
  • 13 Vercellini P, Vigano P, Buggio L. et al. Perimenopausal management of ovarian endometriosis and associated cancer risk: When is medical or surgical treatment indicated?. Best Pract Res Clin Obstet Gynaecol 2018; 51: 151-168
  • 14 Guan B, Rahmanto YS, Wu RC. et al. Roles of deletion of Arid1a, a tumor suppressor, in mouse ovarian tumorigenesis. J Natl Cancer Inst 2014; 106
  • 15 Chandler RL, Damrauer JS, Raab JR. et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun 2015; 6: 6118
  • 16 Yamaguchi K, Huang Z, Matsumura N. et al. Epigenetic determinants of ovarian clear cell carcinoma biology. Int J Cancer 2014; 135: 585-597
  • 17 Kurman RJ, Shih Ie M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer-shifting the paradigm. Hum Pathol 2011; 42: 918-931
  • 18 Prowse AH, Manek S, Varma R. et al. Molecular genetic evidence that endometriosis is a precursor of ovarian cancer. Int J Cancer 2006; 119: 556-562
  • 19 Emons G, Pahwa GS, Brack C. et al. Gonadotropin releasing hormone binding sites in human epithelial ovarian carcinomata. Eur J Cancer Clin Oncol 1989; 25: 215-221
  • 20 Grundker C, Emons G. The role of gonadotropin-releasing hormone in cancer cell proliferation and metastasis. Front Endocrinol (Lausanne) 2017; 8: 187
  • 21 Grundker C, Gunthert AR, Millar RP. et al. Expression of gonadotropin-releasing hormone II (GnRH-II) receptor in human endometrial and ovarian cancer cells and effects of GnRH-II on tumor cell proliferation. J Clin Endocrinol Metab 2002; 87: 1427-1430
  • 22 Lu JJ, Zheng Y, Kang X. et al. Decreased luteinizing hormone receptor mRNA expression in human ovarian epithelial cancer. Gynecol Oncol 2000; 79: 158-168
  • 23 Chudecka-Glaz A, Rzepka-Gorska I, Kosmowska B. Gonadotropin (LH, FSH) levels in serum and cyst fluid in epithelial tumors of the ovary. Arch Gynecol Obstet 2004; 270: 151-156
  • 24 Irvin SR, Weiderpass E, Stanczyk FZ. et al. Association of anti-mullerian hormone, follicle-stimulating hormone, and inhibin B with risk of ovarian cancer in the Janus Serum Bank. Cancer Epidemiol Biomarkers Prev 2020; 29: 636-642
  • 25 Choi JH, Choi KC, Auersperg N. et al. Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. J Clin Endocrinol Metab 2004; 89: 5508-5516
  • 26 Tashiro H, Katabuchi H, Begum M. et al. Roles of luteinizing hormone/chorionic gonadotropin receptor in anchorage-dependent and -independent growth in human ovarian surface epithelial cell lines. Cancer Sci 2003; 94: 953-959
  • 27 Ji Q, Liu PI, Chen PK. et al. Follicle stimulating hormone-induced growth promotion and gene expression profiles on ovarian surface epithelial cells. Int J Cancer 2004; 112: 803-814
  • 28 Lau MT, Wong AS, Leung PC. Gonadotropins induce tumor cell migration and invasion by increasing cyclooxygenases expression and prostaglandin E(2) production in human ovarian cancer cells. Endocrinology 2010; 151: 2985-2993
  • 29 Schiffenbauer YS, Meir G, Maoz M. et al. Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell adhesion mediated by CD44 and by alpha(v)-integrin. Gynecol Oncol 2002; 84: 296-302
  • 30 Zygmunt M, Herr F, Keller-Schoenwetter S. et al. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clin Endocrinol Metab 2002; 87: 5290-5296
  • 31 Heinonen PK, Koivula T, Rajaniemi H. et al. Peripheral and ovarian venous concentrations of steroid and gonadotropin hormones in postmenopausal women with epithelial ovarian tumors. Gynecol Oncol 1986; 25: 1-10
  • 32 Cunat S, Rabenoelina F, Daures JP. et al. Aromatase expression in ovarian epithelial cancers. J Steroid Biochem Mol Biol 2005; 93: 15-24
  • 33 Trabert B, Brinton LA, Anderson GL. et al. Circulating estrogens and postmenopausal ovarian cancer risk in the Womenʼs Health Initiative Observational Study. Cancer Epidemiol Biomarkers Prev 2016; 25: 648-656
  • 34 Vuong NH, Cook DP, Forrest LA. et al. Single-cell RNA-sequencing reveals transcriptional dynamics of estrogen-induced dysplasia in the ovarian surface epithelium. PLoS Genet 2018; 14: e1007788
  • 35 Valladares M, Plaza-Parrochia F, Lepez M. et al. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer. Histol Histopathol 2017; 32: 1187-1196
  • 36 Schuler-Toprak S, Weber F, Skrzypczak M. et al. Estrogen receptor beta is associated with expression of cancer associated genes and survival in ovarian cancer. BMC Cancer 2018; 18: 981
  • 37 Lee P, Rosen DG, Zhu C. et al. Expression of progesterone receptor is a favorable prognostic marker in ovarian cancer. Gynecologic Oncol 2005; 96: 671-677
  • 38 Lenhard M, Tereza L, Heublein S. et al. Steroid hormone receptor expression in ovarian cancer: progesterone receptor B as prognostic marker for patient survival. BMC Cancer 2012; 12: 553
  • 39 Treeck O, Pfeiler G, Mitter D. et al. Estrogen receptor {beta}1 exerts antitumoral effects on SK-OV-3 ovarian cancer cells. J Endocrinol 2007; 193: 421-433
  • 40 Schuler-Toprak S, Moehle C, Skrzypczak M. et al. Effect of estrogen receptor beta agonists on proliferation and gene expression of ovarian cancer cells. BMC Cancer 2017; 17: 319
  • 41 Matsumura S, Ohta T, Yamanouchi K. et al. Activation of estrogen receptor alpha by estradiol and cisplatin induces platinum-resistance in ovarian cancer cells. Cancer Biol Ther 2017; 18: 730-739
  • 42 Syed V, Mukherjee K, Godoy-Tundidor S. et al. Progesterone induces apoptosis in TRAIL-resistant ovarian cancer cells by circumventing c-FLIPL overexpression. J Cell Biochem 2007; 102: 442-452
  • 43 Hua K, Feng W, Cao Q. et al. Estrogen and progestin regulate metastasis through the PI3K/AKT pathway in human ovarian cancer. Int J Oncol 2008; 33: 959-967
  • 44 Zhao D, Zhang F, Zhang W. et al. Prognostic role of hormone receptors in ovarian cancer: a systematic review and meta-analysis. Int J Gynecol Cancer 2013; 23: 25-33
  • 45 Cardillo MR, Petrangeli E, Aliotta N. et al. Androgen receptors in ovarian tumors: correlation with oestrogen and progesterone receptors in an immunohistochemical and semiquantitative image analysis study. J Exp Clin Cancer Res 1998; 17: 231-237
  • 46 Edmondson RJ, Monaghan JM, Davies BR. The human ovarian surface epithelium is an androgen responsive tissue. Br J Cancer 2002; 86: 879-885
  • 47 Giovannucci E, Stampfer MJ, Krithivas K. et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci U S A 1997; 94: 3320-3323
  • 48 Li AJ, Elmore RG, Pavelka JC. et al. Hyperandrogenism, mediated by obesity and receptor polymorphisms, promotes aggressive epithelial ovarian cancer biology. Gynecol Oncol 2007; 107: 420-423
  • 49 Evangelou A, Jindal SK, Brown TJ. et al. Down-regulation of transforming growth factor beta receptors by androgen in ovarian cancer cells. Cancer Res 2000; 60: 929-935
  • 50 Sheach LA, Adeney EM, Kucukmetin A. et al. Androgen-related expression of G-proteins in ovarian cancer. Br J Cancer 2009; 101: 498-503
  • 51 Ilekis JV, Connor JP, Prins GS. et al. Expression of epidermal growth factor and androgen receptors in ovarian cancer. Gynecol Oncol 1997; 66: 250-254
  • 52 Fathalla MF. Incessant ovulation-a factor in ovarian neoplasia?. Lancet 1971; 2: 163
  • 53 Kuhn E, Kurman RJ, Shih IM. Ovarian Cancer Is an Imported Disease: Fact or Fiction?. Curr Obstet Gynecol Rep 2012; 1: 1-9
  • 54 Emons G. Hormonelle Kontrazeption und Krebs. Frauenheilkunde up2date 2020; 14: 243-255
  • 55 Cramer DW, Welch WR. Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst 1983; 71: 717-721
  • 56 Blaakaer J, Baeksted M, Micic S. et al. Gonadotropin-releasing hormone agonist suppression of ovarian tumorigenesis in mice of the Wx/Wv genotype. Biol Reprod 1995; 53: 775-779
  • 57 Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst 1998; 90: 1774-1786
  • 58 Helzlsouer KJ, Alberg AJ, Gordon GB. et al. Serum gonadotropins and steroid hormones and the development of ovarian cancer. JAMA 1995; 274: 1926-1930
  • 59 Wynder EL, Dodo H, Barber HR. Epidemiology of cancer of the ovary. Cancer 1969; 23: 352-370
  • 60 Sonnichsen AC, Lindlacher U, Richter WO. et al. [Obesity, body fat distribution and the incidence of breast, cervical, endometrial and ovarian carcinomas]. Dtsch Med Wochenschr 1990; 115: 1906-1910
  • 61 [Anonym] Ovarian cancer and body size: individual participant meta-analysis including 25,157 women with ovarian cancer from 47 epidemiological studies. PLoS Med 2012; 9: e1001200
  • 62 Olsen CM, Green AC, Nagle CM. et al. Epithelial ovarian cancer: testing the ʼandrogens hypothesisʼ. Endocr Relat Cancer 2008; 15: 1061-1068
  • 63 Massuger L, Roelofsen T, Ham M. et al. The origin of serous ovarian cancer may be found in the uterus: a novel hypothesis. Med Hypotheses 2010; 74: 859-861
  • 64 Baergen RN, Warren CD, Isacson C. et al. Early uterine serous carcinoma: clonal origin of extrauterine disease. Int J Gynecol Pathol 2001; 20: 214-219
  • 65 Kupryjanczyk J, Thor AD, Beauchamp R. et al. Ovarian, peritoneal, and endometrial serous carcinoma: clonal origin of multifocal disease. Mod Pathol 1996; 9: 166-173
  • 66 Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med 2017; 14: 9-32
  • 67 Besevic J, Gunter MJ, Fortner RT. et al. Reproductive factors and epithelial ovarian cancer survival in the EPIC cohort study. Br Journal Cancer 2015; 113: 1622-1631
  • 68 Tzonou A, Day NE, Trichopoulos D. et al. The epidemiology of ovarian cancer in Greece: a case-control study. Eur J Cancer Clin Oncol 1984; 20: 1045-1052
  • 69 Shafrir AL, Babic A, Tamimi RM. et al. Reproductive and hormonal factors in relation to survival and platinum resistance among ovarian cancer cases. Br J Cancer 2016; 115: 1391-1399
  • 70 Tsilidis KK, Allen NE, Key TJ. et al. Oral contraceptive use and reproductive factors and risk of ovarian cancer in the European Prospective Investigation into Cancer and Nutrition. Br J Cancer 2011; 105: 1436-1442
  • 71 Wentzensen N, Poole EM, Trabert B. et al. Ovarian cancer risk factors by histologic subtype: An analysis from the Ovarian Cancer Cohort Consortium. J Clin Oncol 2016; 34: 2888-2898
  • 72 Braem MG, Onland-Moret NC, van den Brandt PA. et al. Reproductive and hormonal factors in association with ovarian cancer in the Netherlands cohort study. Am J Epidemiol 2010; 172: 1181-1189
  • 73 Trabert B, Tworoger SS, OʼBrien KM. et al. The risk of ovarian cancer increases with an increase in the lifetime number of ovulatory cycles: An analysis from the Ovarian Cancer Cohort Consortium (OC3). Cancer Res 2020; 80: 1210-1218
  • 74 Peres LC, Moorman PG, Alberg AJ. et al. Lifetime number of ovulatory cycles and epithelial ovarian cancer risk in African American women. Cancer Causes Control 2017; 28: 405-414
  • 75 Kim SJ, Rosen B, Fan I. et al. Epidemiologic factors that predict long-term survival following a diagnosis of epithelial ovarian cancer. Br J Cancer 2017; 116: 964-971
  • 76 Modugno F, Goughnour SL, Wallack D. et al. Breastfeeding factors and risk of epithelial ovarian cancer. Gynecol Oncol 2019; 153: 116-122
  • 77 Gaitskell K, Green J, Pirie K. et al. Histological subtypes of ovarian cancer associated with parity and breastfeeding in the prospective Million Women Study. Int J Cancer 2018; 142: 281-289
  • 78 Moorman PG, Alberg AJ, Bandera EV. et al. Reproductive factors and ovarian cancer risk in African-American women. Ann Epidemiol 2016; 26: 654-662
  • 79 Jordan SJ, Cushing-Haugen KL, Wicklund KG. et al. Breast-feeding and risk of epithelial ovarian cancer. Cancer Causes Control 2012; 23: 919-927
  • 80 Jordan SJ, Siskind V, Green AC. et al. Breastfeeding and risk of epithelial ovarian cancer. Cancer Causes Control 2010; 21: 109-116
  • 81 Troisi R, Bjorge T, Gissler M. et al. The role of pregnancy, perinatal factors and hormones in maternal cancer risk: a review of the evidence. J Intern Med 2018; 283: 430-445
  • 82 Whittemore AS, Harris R, Itnyre J. Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. II. Invasive epithelial ovarian cancers in white women. Collaborative Ovarian Cancer Group. Am J Epidemiol 1992; 136: 1184-1203
  • 83 Paltiel O, Tajuddin SM, Polanker Y. et al. Grand multiparity and reproductive cancer in the Jerusalem Perinatal Study Cohort. Cancer Causes Control 2016; 27: 237-247
  • 84 McGuire V, Hartge P, Liao LM. et al. Parity and oral contraceptive use in relation to ovarian cancer risk in older women. Cancer Epidemiol Biomarkers Prev 2016; 25: 1059-1063
  • 85 Skold C, Bjorge T, Ekbom A. et al. Preterm delivery is associated with an increased risk of epithelial ovarian cancer among parous women. Int J Cancer 2018; 143: 1858-1867
  • 86 Wu AH, Pearce CL, Lee AW. et al. Timing of births and oral contraceptive use influences ovarian cancer risk. Int J Cancer 2017; 141: 2392-2399
  • 87 Fortner RT, Ose J, Merritt MA. et al. Reproductive and hormone-related risk factors for epithelial ovarian cancer by histologic pathways, invasiveness and histologic subtypes: Results from the EPIC cohort. Int J Cancer 2015; 137: 1196-1208
  • 88 Brinton LA, Melton LJ, Malkasian GD. et al. Cancer risk after evaluation for infertility. Am J Epidemiol 1989; 129: 712-722
  • 89 Rodriguez C, Tatham LM, Calle EE. et al. Infertility and risk of fatal ovarian cancer in a prospective cohort of US women. Cancer Causes Control 1998; 9: 645-651
  • 90 Stentz NC, Koelper N, Barnhart KT. et al. Infertility and mortality. Am J Obstet Gynecol 2020; 222: 251.e1-251.e10
  • 91 Rossing MA, Tang MT, Flagg EW. et al. A case-control study of ovarian cancer in relation to infertility and the use of ovulation-inducing drugs. Am J Epidemiol 2004; 160: 1070-1078
  • 92 Lundberg FE, Iliadou AN, Rodriguez-Wallberg K. et al. The risk of breast and gynecological cancer in women with a diagnosis of infertility: a nationwide population-based study. Eur J Epidemiol 2019; 34: 499-507
  • 93 Venn A, Watson L, Bruinsma F. et al. Risk of cancer after use of fertility drugs with in-vitro fertilisation. Lancet 1999; 354: 1586-1590
  • 94 Ness RB, Cramer DW, Goodman MT. et al. Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. Am J Epidemiol 2002; 155: 217-224
  • 95 Pearce CL, Templeman C, Rossing MA. et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol 2012; 13: 385-394
  • 96 Jensen A, Sharif H, Olsen JH. et al. Risk of breast cancer and gynecologic cancers in a large population of nearly 50,000 infertile Danish women. Am J Epidemiol 2008; 168: 49-57
  • 97 Stewart LM, Spilsbury K, Jordan S. et al. Risk of high-grade serous ovarian cancer associated with pelvic inflammatory disease, parity and breast cancer. Cancer Epidemiol 2018; 55: 110-116
  • 98 Jiao J, Sagnelli M, Shi B. et al. Genetic and epigenetic characteristics in ovarian tissues from polycystic ovary syndrome patients with irregular menstruation resemble those of ovarian cancer. BMC Endocr Disord 2019; 19: 30
  • 99 Schildkraut JM, Schwingl PJ, Bastos E. et al. Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet Gynecol 1996; 88: 554-559
  • 100 Chittenden BG, Fullerton G, Maheshwari A. et al. Polycystic ovary syndrome and the risk of gynaecological cancer: a systematic review. Reprod Biomed Online 2009; 19: 398-405
  • 101 Barry JA, Azizia MM, Hardiman PJ. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update 2014; 20: 748-758
  • 102 Ding DC, Chen W, Wang JH. et al. Association between polycystic ovarian syndrome and endometrial, ovarian, and breast cancer: A population-based cohort study in Taiwan. Medicine (Baltimore) 2018; 97: e12608
  • 103 Rebar R, Judd HL, Yen SS. et al. Characterization of the inappropriate gonadotropin secretion in polycystic ovary syndrome. J Clin Invest 1976; 57: 1320-1329
  • 104 Baird DT, Corker CS, Davidson DW. et al. Pituitary-ovarian relationships in polycystic ovary syndrome. J Clin Endocrinol Metab 1977; 45: 798-801
  • 105 Kurman RJ. ed. WHO Classification of Tumors of female reproductive Organs. Lyon: IARC; 2014