Exp Clin Endocrinol Diabetes 2020; 128(06/07): 383-387
DOI: 10.1055/a-1088-1187
Mini-Review

Noncanonical Action of Thyroid Hormone Receptors α and β

G. Sebastian Hönes
1   Department of Endocrinology, Diabetes and Metabolism (G.S.H., D:G., L.C.M.), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
,
Daniela Geist
1   Department of Endocrinology, Diabetes and Metabolism (G.S.H., D:G., L.C.M.), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
,
Lars C. Moeller
1   Department of Endocrinology, Diabetes and Metabolism (G.S.H., D:G., L.C.M.), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
› Author Affiliations

Abstract

Thyroid hormone (TH) is essential for the regulation of many physiological processes, especially growth, organ development, energy metabolism and cardiovascular effects. TH acts via the TH receptors (TR) α and β. By binding to thyroid hormone responsive elements (TREs) on the DNA, TRs regulate expression of TH target genes. Thus, TRs are mainly characterized as ligand dependent transcription factors and regulation of gene expression and protein synthesis is considered the canonical mode of TH/TR action. The demonstration that the ligand-bound TRs α and β also mediate activation of the phosphatidylinositol-3-kinase (PI3K) pathway established noncanonical TH/TR action as an additional mode of TH signaling. Recently, TR mutant mouse models allowed to determine the underlying mode of TH/TR action, either canonical or noncanonical TH/TR signaling, for several physiological TH effects in vivo: Regulation of the hypothalamic-pituitary-thyroid axis requires DNA-binding of TRβ, whereas hepatic triglyceride content appears to be regulated by noncanonical TRβ signaling. TRα mediated effects in bone development are dependent on DNA-binding, whereas several cardiovascular TRα effects are rapid and independent from DNA-binding. Therefore, noncanonical TH/TR action contributes to the overall effects of TH in physiology.



Publication History

Received: 30 August 2019
Received: 03 December 2019

Accepted: 30 December 2019

Article published online:
24 April 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Oppenheimer JH, Schwartz HL, Mariash CN. et al. Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev 1987; 8: 288-308 DOI: doi:10.1210/edrv-8-3-288.
  • 2 Yen PM. Physiological and molecular basis of thyroid hormone action. Physiological Reviews 2001; 81: 1097-1142
  • 3 Segal J, Buckley C, Ingbar SH. Stimulation of adenylate cyclase activity in rat thymocytes in vitro by 3,5,3'-triiodothyronine. Endocrinology 1985; 116: 2036-2043 . doi:10.1210/endo-116-5-2036
  • 4 Segal J, Ingbar SH. In vivo stimulation of sugar uptake in rat thymocytes. An extranuclear action of 3,5,3'-triiodothyronine. J Clin Invest 1985; 76: 1575-1580 . doi:10.1172/jci112139
  • 5 Segal J, Ingbar SH. Studies of the mechanism by which 3,5,3'- triiodothyronine stimulates 2-deoxyglucose uptake in rat thymocytes in vitro. Role of calcium and adenosine 3':5'-monophosphate. J Clin Invest 1981; 68: 103-110
  • 6 Storey NM, O'Bryan JP, Armstrong DL. Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Current Biology : CB 2002; 12: 27-33
  • 7 Storey NM, Gentile S, Ullah H. et al. Rapid signaling at the plasma membrane by a nuclear receptor for thyroid hormone. Proceedings of the National Academy of Sciences of the United States of America 2006; 103: 5197-5201 DOI: 10.1073/pnas.0600089103.
  • 8 Cao X, Kambe F, Moeller LC. et al. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol Endocrinol 2005; 19: 102-112 DOI: 10.1210/me.2004-0093.
  • 9 Cao X, Kambe F, Yamauchi M. et al. Thyroid-hormone-dependent activation of the phosphoinositide 3-kinase/Akt cascade requires Src and enhances neuronal survival. The Biochemical Journal 2009; 424: 201-209 DOI: 10.1042/BJ20090643.
  • 10 Hiroi Y, Kim HH, Ying H. et al. Rapid nongenomic actions of thyroid hormone. Proceedings of the National Academy of Sciences of the United States of America 2006; 103: 14104-14109 DOI: 10.1073/pnas.0601600103.
  • 11 Martin NP, Marron Fernandez de Velasco E, Mizuno F. et al. A rapid cytoplasmic mechanism for PI3 kinase regulation by the nuclear thyroid hormone receptor, TRbeta, and genetic evidence for its role in the maturation of mouse hippocampal synapses in vivo. Endocrinology 2014; 155: 3713-3724 DOI: 10.1210/en.2013-2058.
  • 12 Flamant F, Cheng SY, Hollenberg AN. et al. Thyroid hormone signaling pathways. Time for a more precise nomenclature. Endocrinology 2017; 158: 2052-2057 DOI: 10.1210/en.2017-00250.
  • 13 Singh BK, Sinha RA, Yen PM. Novel Transcriptional Mechanisms for Regulating Metabolism by Thyroid Hormone. International Journal of Molecular Sciences 2018; 19 . doi:10.3390/ijms19103284
  • 14 Bergh JJ, Lin HY, Lansing L. et al. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005; 146: 2864-2871 DOI: 10.1210/en.2005-0102.
  • 15 Lin HY, Mousa SA, Davis PJ. Demonstration of the receptor site for thyroid hormone on Integrin alphavbeta3. Methods Mol Biol 2018; 1801: 61-65 . doi:10.1007/978-1-4939-7902-8_7
  • 16 Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nature Reviews Endocrinology 2016; 12: 111-121 . doi:10.1038/nrendo.2015.205
  • 17 Davis PJ, Leonard JL, Lin HY. et al. Molecular basis of nongenomic actions of thyroid hormone. Vitamins and hormones 2018; 106: 67-96 DOI: 10.1016/bs.vh.2017.06.001.
  • 18 Gauthier K, Chassande O, Plateroti M. et al. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. The EMBO Journal 1999; 18: 623-631 DOI: 10.1093/emboj/18.3.623.
  • 19 Gauthier K, Plateroti M, Harvey CB. et al. Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol 2001; 21: 4748-4760 DOI: 10.1128/MCB.21.14.4748-4760.2001.
  • 20 Shibusawa N, Hollenberg AN, Wondisford FE. Thyroid hormone receptor DNA binding is required for both positive and negative gene regulation. J Biol Chem 2003; 278: 732-738 . doi:10.1074/jbc.M207264200
  • 21 Shibusawa N, Hashimoto K, Nikrodhanond AA. et al. Thyroid hormone action in the absence of thyroid hormone receptor DNA-binding in vivo. Journal of Clinical Investigation 2003; 112: 588-597 DOI: 10.1172/jci200318377.
  • 22 Hönes GS, Rakov H, Logan J. et al. Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proceedings of the National Academy of Sciences of the United States of America 2017; 114: E11323-E11332 DOI: 10.1073/pnas.1706801115.
  • 23 Gauthier K, Flamant F. Nongenomic, TRbeta-Dependent, thyroid hormone response gets genetic support. Endocrinology 2014; 155: 3206-3209 . doi:10.1210/en.2014-1597
  • 24 Forrest D, Hanebuth E, Smeyne RJ. et al. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. The EMBO Journal 1996; 15: 3006-3015
  • 25 Weiss RE, Forrest D, Pohlenz J. et al. Thyrotropin regulation by thyroid hormone in thyroid hormone receptor beta-deficient mice. Endocrinology 1997; 138: 3624-3629 DOI: 10.1210/endo.138.9.5412.
  • 26 Abel ED, Ahima RS, Boers ME. et al. Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest 2001; 107: 1017-1023 DOI: 10.1172/jci10858.
  • 27 Wikstrom L, Johansson C, Salto C. et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. The EMBO Journal 1998; 17: 455-461 DOI: 10.1093/emboj/17.2.455.
  • 28 Macchia PE, Takeuchi Y, Kawai T. et al. Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor alpha. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 349-354 DOI: 10.1073/pnas.011306998.
  • 29 Lin Y, Sun Z. Thyroid hormone potentiates insulin signaling and attenuates hyperglycemia and insulin resistance in a mouse model of type 2 diabetes. British Journal of Pharmacology 2011; 162: 597-610 . doi:10.1111/j.1476-5381.2010.01056.x
  • 30 Petersson U, Kjellstrom T. Thyroid function tests, serum lipids and gender interrelations in a middle-aged population. Scandinavian Journal of Primary Health Care 2001; 19: 183-185
  • 31 Johansson L, Rudling M, Scanlan TS. et al. Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 10297-10302 DOI: 10.1073/pnas.0504379102.
  • 32 Araki O, Ying H, Zhu XG. et al. Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol Endocrinol 2009; 23: 308-315 DOI: 10.1210/me.2008-0311.
  • 33 Sinha RA, Singh BK, Yen PM. Direct effects of thyroid hormones on hepatic lipid metabolism. Nature reviews Endocrinology 2018; DOI: 10.1038/nrendo.2018.10.
  • 34 Iannucci LF, Cioffi F, Senese R. et al. Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Scientific Reports 2017; 7: 2023 DOI: 10.1038/s41598-017-02205-1.
  • 35 Grasselli E, Voci A, Canesi L. et al. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. The Journal of Endocrinology 2011; 210: 59-69 DOI: 10.1530/joe-11-0074.
  • 36 Senese R, Cioffi F, Petito G. et al. Thyroid hormone metabolites and analogues. Endocrine 2019; 66: 105-114 DOI: 10.1007/s12020-019-02025-5.
  • 37 Senese R, de Lange P, Petito G. et al. 3,5-Diiodothyronine: A novel thyroid hormone metabolite and potent modulator of energy metabolism. Frontiers in Endocrinology 2018; 9: 427 DOI: 10.3389/fendo.2018.00427.
  • 38 Jonas W, Lietzow J, Wohlgemuth F. et al. 3,5-diiodo-L-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 2015; 1: 389-399 DOI: 10.1210/en.2014-1604.
  • 39 Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 2016; 37: 135-187 . doi:10.1210/er.2015-1106
  • 40 Wojcicka A, Bassett JH, Williams GR. Mechanisms of action of thyroid hormones in the skeleton. Biochimica et biophysica acta 2013; 1830: 3979-3986 . doi:10.1016/j.bbagen.2012.05.005
  • 41 Bassett JH, Williams GR. The skeletal phenotypes of TRalpha and TRbeta mutant mice. J Mol Endocrinol 2009; 42: 269-282 . doi:10.1677/JME-08-0142
  • 42 Bassett JH, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Molecular and Cellular Endocrinology 2003; 213: 1-11 . doi:10.1016/j.mce.2003.10.033
  • 43 Bassett JH, Nordstrom K, Boyde A. et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007; 21: 1893-1904 DOI: 10.1210/me.2007-0157.
  • 44 Bassett JH, Boyde A, Zikmund T. et al. Thyroid hormone receptor alpha mutation causes a severe and thyroxine-resistant skeletal dysplasia in female mice. Endocrinology 2014; 155: 3699-3712 DOI: 10.1210/en.2013-2156.
  • 45 Refetoff S, Bassett JH, Beck-Peccoz P. et al. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. Thyroid 2014; 24: 407-409 DOI: 10.1089/thy.2013.3393.nomen.
  • 46 Bassett JH, Boyde A, Howell PG. et al. Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proceedings of the National Academy of Sciences of the United States of America 2010; 107: 7604-7609 DOI: 10.1073/pnas.0911346107.
  • 47 Liu KL, Lo M, Canaple L. et al. Vascular function of the mesenteric artery isolated from thyroid hormone receptor-alpha knockout mice. Journal of Vascular Research 2014; 51: 350-359 DOI: 10.1159/000368195.
  • 48 Geist D, Hönes GS, Gassen J. et al. Rapid vasodilation is a physiological effect of noncanonical thyroid hormone receptor alpha action. European Thyroid Journal 2018; 7 (Suppl. 01) 31