Kardiologie up2date 2021; 17(01): 20-29
DOI: 10.1055/a-1081-8614
Schritt für Schritt

Intrakoronare Lithotripsie der kalzifizierten Stenose – Schritt für Schritt

Stefan Harb

Verkalkte Koronarstenosen erfordern Ballondilatation mit hohen Drucken, um Platz für einen Stent zu schaffen. Das geht meist gut, doch kann es auch misslingen: Der Kalk gibt nicht nach, oder es kommt gar zur Ruptur. Es gibt ein neues Werkzeug für die Kardiologen: Die intrakoronare Lithotripsie (IVL) nutzt Schallwellen, um harte Plaque zu lockern. Im Gegensatz zu den anderen Methoden wurden bislang keine Perforationen beschrieben.



Publication History

Article published online:
17 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Fujino A, Mintz GS, Matsumura M. et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention 2018; 13: e2182-e2189
  • 2 Maehara A, Matsumura M, Ali ZA, Mintz GS. Intravascular Imaging and coronary Calcification. In: Finn AV. ed. Coronary Calcium: a comprehensive Understanding of its Biology, Use in Screening, and interventional Management. London, San Diego, Cambridge (MA), Oxford: Elsevier; 2019: 125-157
  • 3 Godino C, Colombo A. Complications of percutaneous coronary Intervention. In: Lanzer P. ed. PanVascular Medicine. Berlin: Springer; 2015: 2297-2322
  • 4 Gallagher SM, Jones DA, Smith EJ. Complications of Rotablation. In: Lindsay A, Chitkara K, Di Mario C. eds. Complications of percutaneous coronary Intervention. Berlin: Springer; 2016
  • 5 Venuti G, DʼAgosta G, Tamburino C. et al. Coronary lithotripsy for failed rotational atherectomy, cutting balloon, scoring balloon, and ultra-high-pressure non-compliant balloon. Catheter Cardiovasc Interv 2019; 94: E111-E115 DOI: 10.1002/ccd.28287.
  • 6 Karacsonyi J, Armstrong EJ, Truong HTD. et al. Contemporary Use of Laser During Percutaneous Coronary Interventions: Insights from the Laser Veterans Affairs (LAVA) Multicenter Registry. J Invasive Cardiol 2018; 30: 195-201
  • 7 Brodmann M, Schwindt A, Argyriou A. et al. Safety and Feasibility of Intravascular Lithotripsy for Treatment of Common Femoral Artery Stenoses. J Endovasc Ther 2019; 26: 283-287
  • 8 Brodmann M, Werner M, Holden A. et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: Results of Disrupt PAD II. Catheter Cardiovasc Interv 2019; 93: 335-342
  • 9 Ali ZA, Nef H, Escaned J. et al. Safety and Effectiveness of Coronary Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Stenoses: The Disrupt CAD II Study. Circ Cardiovasc Interv 2019; 12: e008434 DOI: 10.1161/CIRCINTERVENTIONS.119.008434.
  • 10 Yeoh J, Hill J. Intracoronary Lithotripsy for the Treatment of Calcified Plaque. Interv Cardiol Clin 2019; 8: 411-424
  • 11 Yeoh J, Cottens D, Cosgrove C. et al. Management of stent underexpansion using intravascular lithotripsy-Defining the utility of a novel device. Catheter Cardiovasc Interv 08.01.2020; DOI: 10.1002/ccd.28715.
  • 12 Forero MNT, van Mieghem MN, Daemen J. Stent underexpansion due to heavy coronary calcification resistant to rotational atherectomy: A case for coronary lithoplasty?. Catheter Cardiovasc Interv 2020; 96: 598-600
  • 13 Ristalli F, Sorini Dini C, Stolcova M. et al. Role of Lithotripsy for Small Calcified Iliacs in the Era of Big Devices. Curr Cardiol Rep 2019; 21: 143 DOI: 10.1007/s11886-019-1245-2.
  • 14 Ielasi A, Loffi M, De Blasio G. et al. “Rota-tripsy”: A successful combined approach for the treatment of a long and heavily calcified coronary lesion. Cardiovasc Revasc Med 2020; 21: 152-154 DOI: 10.1016/j.carrev.2019.12.023.