Klin Monbl Augenheilkd 2020; 237(07): 879-888
DOI: 10.1055/a-1080-2900
Klinische Studie

Verändert sich die foveale avaskuläre Zone beim Glaukom?

Does the Foveal Avascular Zone Change in Glaucoma?
Claudia Lommatzsch
1   Augenabteilung am St. Franziskus-Hospital Münster
,
Carsten Heinz
1   Augenabteilung am St. Franziskus-Hospital Münster
2   Universitätsaugenklinik, Universitätsklinikum Essen
,
Joerg Michael Koch
1   Augenabteilung am St. Franziskus-Hospital Münster
,
Britta Heimes-Bussmann
1   Augenabteilung am St. Franziskus-Hospital Münster
,
Ursula Hahn
3   Institut für Medizinische Biometrie und Epidemiologie, Universität Witten/Herdecke, Witten
4   4 OcuNet GmbH & Co KG, Düsseldorf
,
Swaantje Grisanti
5   Universitätsaugenklinik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
› Author Affiliations

Zusammenfassung

Hintergrund Vergleichende Beurteilung der fovealen avaskulären Zone (FAZ) mit ihrem Umfang und dem Azirkularitätsindex (AI) sowie der umgebenden Vessel Density bei Glaukomaugen im Vergleich zu gesunden Augen mit zusätzlicher Unterteilung nach Gesichtsfelddefekten an verschiedenen Stellen (zentral oder peripher).

Material und Methoden Insgesamt wurden die Daten von 128 Augen ausgewertet. Dabei wurden zunächst Glaukomaugen (n = 74) mit gesunden Augen (n = 54) verglichen und im Weiteren Glaukomaugen mit einem zentralen Gesichtsfeldausfall (ZGD, n = 19) von Augen mit einem peripheren Gesichtsfelddefekt (PGD, n = 34) unterschieden. Die FAZ-Fläche, ihr Umfang und die Rundheit sowie die parafoveale Vessel Density (VD) wurden mittels der optischen Kohärenztomografie-Angiografie im oberflächlichen und tiefen Gefäßplexus berechnet.

Ergebnisse Glaukomaugen haben im Vergleich zu gesunden Augen keine signifikante Veränderung der FAZ, ihres Umfangs oder der Zirkularität der avaskulären Zone. Unterteilt man jedoch die Glaukomaugen anhand der Gesichtsfeldausfälle, zeigt sich zum einen, dass die Augen mit einem zentralen Ausfall eine signifikant größere FAZ haben als die mit peripheren Ausfällen und dass der Umfang ebenfalls signifikant größer ist. Zum anderen zeigt der AI keinen signifikanten Unterschied in Abhängigkeit von der Lokalisation der Gesichtsfelddefekte. Die makuläre/foveale Vessel Density wird signifikant geringer bei der ZDG-Gruppe.

Schlussfolgerungen Im Rahmen einer Glaukomerkrankung vergrößert sich die foveale avaskuläre Zone, wenn eine Zentralisierung des Gesichtsfelddefektes vorliegt und die Vessel Density nimmt im Bereich der Makula signifikant ab.

Abstract

Background The foveal avascular zone (FAZ) – with perimeter and acircularity index (AI) and surrounding vessel density – are measured in glaucomatous eyes in comparison to healthy eyes – with additional subdivision into visual field defects in different locations (central vs. peripheral).

Materials and Methods The data from 128 eyes were evaluated. Firstly, glaucomatous eyes (n = 74) were compared with healthy eyes (n = 54). In addition, glaucomatous eyes with a central visual field defect (ZGD, n = 19) and eyes with peripheral visual field defect (PGD, n = 34) were differentiated. The FAZ area, its perimeter and roundness, as well as the parafoveal vessel density (VD), were calculated by means of optical coherence tomography angiography in the superficial and deep vascular plexus.

Results Glaucomatous eyes have no significant change in FAZ, its perimeter or the AI compared to healthy eyes. However, dividing the glaucomatous eye by visual field defect reveals that the eyes with a central defect have a significantly larger FAZ than those with a peripheral defect and the perimeter is also significantly larger. The AI shows no significant difference depending on the localisation of visual field defects. The macular/foveal VD is significantly lower in the ZDG group.

Conclusions In glaucoma, the FAZ enlarges when the visual field defect is centralised and VD decreases significantly in the area of fovea.



Publication History

Received: 23 August 2019

Accepted: 26 November 2019

Article published online:
09 April 2020

Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Jonas JB. Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma. Acta Ophthalmol (Copenh) 2011; 89: 505-514
  • 2 Ebneter A, Wagels B, Zinkernagel MS. Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls. Eye (Lond) 2009; 23: 606-611
  • 3 Harju M, Kurvinen L, Saari J. et al. Blood flow in the peripapillary retina in exfoliation glaucoma. Clin Experiment Ophthalmol 2008; 36: 738-743
  • 4 Tan PEZ, Balaratnasingam C, Xu J. et al. Quantitative comparison of retinal capillary images derived by speckle variance optical coherence tomography with histology. Invest Ophthalmol Vis Sci 2015; 56: 3989-3996
  • 5 Jia Y, Morrison JC, Tokayer J. et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012; 3: 3127-3137
  • 6 Lommatzsch C, Rothaus K, Koch JM. et al. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol 2018; 11: 835-843
  • 7 Lommatzsch C, Rothaus K, Koch JM. et al. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 2018; 256: 1499-1508
  • 8 Takase N, Nozaki M, Kato A. et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015; 35: 2377-2383
  • 9 Adhi M, Bonini Filho MA, Louzada RN. et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016; 57: OCT486-OCT494
  • 10 Lommatzsch C, Rothaus K, Koch JM. et al. Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography. Int Ophthalmol 2019; 39: 2583-2594
  • 11 Bortz J. Statistik für Human- und Sozialwissenschaftler. 7. Aufl.. Berlin, Heidelberg, New York: Springer; 2010
  • 12 Nettleship E. Note on retinal blood vessels of the yellow spot. Roy Lond Ophthalmol Hosp Rep; 1875
  • 13 Weale RA. Why does the human retina possess a fovea?. Nature 1966; 212: 255-256
  • 14 Campbell JP, Zhang M, Hwang TS. et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 2017; 7: 42201
  • 15 Bligard E. Aging changes of the parafoveal vasculature. Invest Ophthalmol Vis Sci 1982 1982; 22 (Suppl.) 8
  • 16 Henkind P. Symposium on glaucoma: joint meeting with the National Society for the Prevention of Blindness. New observations on the radial peripapillary capillaries. Invest Ophthalmol 1967; 6: 103-108
  • 17 Heimann K. Choroidal vascular pattern in the macular region. Mod Probl Ophthalmol 1974; 12: 229-233
  • 18 Laatikainen L, Larinkari J. Capillary-free area of the fovea with advancing age. Invest Ophthalmol Vis Sci 1977; 16: 1154-1157
  • 19 Bresnick GH, Condit R, Syrjala S. et al. Abnormalities of the foveal avascular zone in diabetic retinopathy. Arch Ophthalmol 1984; 102: 1286-1293
  • 20 Ibayashi H, Nishimura M, Yamana T. Avascular zone in the macula in cicatricial retinopathy of prematurity. Am J Ophthalmol 1985; 99: 235-239
  • 21 Gass JD. A fluorescein angiographic study of macular dysfunction secondary to retinal vascular disease. II. Retinal vein obstruction. Arch Ophthalmol 1968; 80: 550-568
  • 22 Stevens TS, Busse B, Lee CB. et al. Sickling hemoglobinopathies; macular and perimacular vascular abnormalities. Arch Ophthalmol 1974; 92: 455-463
  • 23 Chang MY, Phasukkijwatana N, Garrity S. et al. Foveal and peripapillary vascular decrement in migraine with aura demonstrated by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2017; 58: 5477-5484 doi:10.1167/iovs.17-22477
  • 24 Wu LZ, Huang ZS, Wu DZ. et al. Characteristics of the capillary-free zone in the normal human macula. Jpn J Ophthalmol 1985; 29: 406-411
  • 25 Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol 1997; 124: 287-295
  • 26 Birinci H, Danaci M, Oge I. et al. Ocular blood flow in healthy and primary open-angle glaucomatous eyes. Ophthalmologica 2002; 216: 434-437
  • 27 Kaiser HJ, Schoetzau A, Stümpfig D. et al. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 1997; 123: 320-327
  • 28 Arend O, Remky A, Plange N. et al. Capillary density and retinal diameter measurements and their impact on altered retinal circulation in glaucoma: a digital fluorescein angiographic study. Br J Ophthalmol 2002; 86: 429-433
  • 29 Samara WA, Say EAT, Khoo CTL. et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina 2015; 35: 2188-2195
  • 30 Zhao Q, Yang WL, Wang XN. et al. Repeatability and reproducibility of quantitative assessment of the retinal microvasculature using optical coherence tomography angiography based on optical microangiography. Biomed Environ Sci 2018; 31: 407-412
  • 31 Pilotto E, Frizziero L, Crepaldi A. et al. Repeatability and reproducibility of foveal avascular zone area measurement on normal eyes by different optical coherence tomography angiography instruments. Ophthalmic Res 2018; 59: 206-211
  • 32 Guo J, She X, Liu X. et al. Repeatability and reproducibility of foveal avascular zone area measurements using AngioPlex spectral domain optical coherence tomography angiography in healthy subjects. Ophthalmologica 2017; 237: 21-28
  • 33 Carpineto P, Mastropasqua R, Marchini G. et al. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography. Br J Ophthalmol 2016; 100: 671-676
  • 34 Magrath GN, Say EAT, Sioufi K. et al. Variability in foveal avascular zone and capillary density using optical coherence tomography angiography machines in healthy eyes. Retina 2017; 37: 2102-2111
  • 35 Corvi F, Pellegrini M, Erba S. et al. Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices. Am J Ophthalmol 2018; 186: 25-31
  • 36 Bates NM, Tian J, Smiddy WE. et al. Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus. Sci Rep 2018; 8: 5355
  • 37 Casselholm de Salles M, Kvanta A, Amrén U. et al. Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity. Invest Ophthalmol Vis Sci 2016; 57: OCT242-OCT246
  • 38 Iafe NA, Phasukkijwatana N, Chen X. et al. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016; 57: 5780-5787
  • 39 Ghassemi F, Mirshahi R, Bazvand F. et al. The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers. J Curr Ophthalmol 2017; 29: 293-299
  • 40 Linderman R, Salmon AE, Strampe M. et al. Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Transl Vis Sci Technol 2017; 6: 16
  • 41 Tan CS, Lim LW, Chow VS. et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci 2016; 57: OCT224-OCT234
  • 42 Krawitz BD, Mo S, Geyman LS. et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vision Res 2017; 139: 177-186
  • 43 Choi J, Kwon J, Shin JW. et al. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS One 2017; 12: e0184948
  • 44 Coscas F, Sellam A, Glacet-Bernard A. et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016; 57: OCT211-OCT223
  • 45 Kwon J, Choi J, Shin JW. et al. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci 2017; 58: 1637-1645
  • 46 Kwon J, Choi J, Shin JW. et al. Glaucoma diagnostic capabilities of foveal avascular zone parameters using optical coherence tomography angiography according to visual field defect location. J Glaucoma 2017; 26: 1120-1129
  • 47 Zivkovic M, Dayanir V, Kocaturk T. et al. Foveal avascular zone in normal tension glaucoma measured by optical coherence tomography angiography. Biomed Res Int 2017; 2017: 3079141
  • 48 Philip S, Najafi A, Tantraworasin A. et al. Macula vessel density and foveal avascular zone parameters in exfoliation glaucoma compared to primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2019; 60: 1244-1253
  • 49 Vo Kim S, Semoun O, Pedinielli A. et al. Optical coherence tomography angiography quantitative assessment of exercise-induced variations in retinal vascular plexa of healthy subjects. Invest Ophthalmol Vis Sci 2019; 60: 1412-1419
  • 50 Snodderly DM, Weinhaus RS. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci 1992; 12: 1169-1193