Subscribe to RSS
DOI: 10.1055/a-1079-2469
Stechmückenübertragene Krankheiten in Zeiten des globalen Wandels
Mosquito-borne diseases in the face of global changePublication History
Publication Date:
17 February 2020 (online)

ZUSAMMENFASSUNG
In jüngster Zeit wurden verschiedene stechmückenübertragene Krankheiten erstmalig in Europa autochthon übertragen. Eine Kombination von Veränderungen greift hier ineinander. Zunächst wurden nicht heimische und sich invasiv ausbreitende kompetente Stechmücken (Insekten) nach Europa eingeschleppt. Außerdem nimmt die Reisetätigkeit kontinuierlich zu, und damit die Einschleppung potenziell übertragbarer Pathogene. Der Klimawandel verbessert die Lebensbedingungen der Stechmücken, fördert deren Etablierung in neuen Gebieten und mit wärmeren Temperaturen werden zunehmend Bedingungen für die Krankheitsübertragung erfüllt. Bisher konnten viele solcher Reisekrankheiten nicht übertragen werden, da die kompetenten Vektoren fehlten. Es kann deshalb sein, dass solche Krankheiten nicht richtig oder frühzeitig erkannt werden und somit weitere Übertragungen erfolgen können. Es gilt, solche neuen Risiken durch fächerübergreifende Kommunikation einzugrenzen.
ABSTRACT
Various mosquito-borne diseases were recently transmitted for the first time in Europe. This was allowed by a combination of interacting changes. Non-native and invasive competent vector species were introduced. Continuously increasing human traveling activity has elevated the likelihood of introducing potentially transmittable pathogens. Climate change has improved habitat conditions for vectors and is now supporting their spread into new areas. Warmer temperatures have increasingly provided conditions for successful autochthonous transmission. Hitherto, such travel diseases could not be transmitted here because of the lack of competent vectors. It is possible that these regionally-novel diseases may not be properly and timely diagnosed. Correspondingly, further transmissions will likely occur. Transdisciplinary exchange of information will be required to limit these novel risks.
-
Literatur
- 1 Fischer D, Thomas SM, Niemitz F. et al Projection of climatic suitability for Aedes albopictus Skus (Culicidae) in Europe unter climate change conditions. Global and Planetary Change 2011; 78: 54-64
- 2 European Centre for Disease Prevention and Control Aedes albopictus, August. 2019 Im Internet www.ecdc.europa.eu/sites/default/files/images/map-Aedes-albopictus-distribution-August-2019.png
- 3 Fischer D, Thomas SM, Neteler M. et al Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches. Euro Surveill 2014: 19 pii: 20696
- 4 Thomas SM, Tjaden NB, Frank C. et al Areas with High Hazard Potential for Autochthonous Transmission of Aedes albopictus-Associated Arboviruses in Germany. Int J Environ Res Public Health 2018: 15 pii: E1270
- 5 Fischer D, Thomas SM, Beierkuhnlein C. Temperature-derived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany. Geospatial Health 2010; 5: 59-69
- 6 Bhatt S, Gething PW, Brady OJ. et al The global distribution and burden of dengue. Nature 2013; 496: 504-507
- 7 European Centre for Disease Prevention and Control Rapid risk assessment: Autochthonous cases of dengue in Spain and France. 1 Oct 2019 Im Internet www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-autochthonous-cases-dengue-spain-and-france
- 8 European Centre for Disease Prevention and Control Rapid risk assessment – Sexual transmission of dengue in Spain. 18 Nov 2019 Im Internet www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-sexual-transmission-dengue-spain
- 9 Gubler DJ, Suharyono W, Tan R. et al Viraemia in patients with naturally acquired dengue infection. Bull World Health Organ 1981; 59: 623-630
- 10 Thomas SM, Tjaden NB, van den Bos S. et al Implementing cargo movement into climate based risk assessment of vector-borne diseases. Int J Environ Res Public Health 2014; 11: 3360-3374
- 11 Holder P, Georg S, Disbury M. et al A Biosecurity Response to Aedes albopictus (Diptera: Culicidae) in Auckland, New Zealand. 2010; 47: 600-609
- 12 World Meteorological Organization WMO Statement on the State of the Global Climate in, 2017. 2018 WMO-No. 1212
- 13 Tjaden NB, Caminade C, Beierkuhnlein C. et al Mosquito-Borne Diseases: Advances in Modelling Climate-Change Impacts. Trends Parasitol 2018; 34: 227-245
- 14 Samy AM, Thomas SM, Wahed AA. et al Mapping the global geographic potential of Zika virus spread. Mem Inst Oswaldo Cruz 2016; 111: 559-560
- 15 Tjaden NB, Suk JE, Fischer D. et al Modelling the effects of global climate change on Chikungunya transmission in the 21st century. Sci Rep 2017; 7: 3813
- 16 Cheng Y, Tjaden NB, Jaeschke A. et al Evaluating the risk for Usutu virus circulation in Europe: comparison of environmental niche models and epidemiological models. Int J Health Geogr 2018; 17: 35
- 17 Ziegler U, Lühken R, Keller M. et al West Nile virus epizootic in Germany, 2018. Antiviral Res 2019; 162: 39-43
- 18 Tjaden NB, Thomas SM, Fischer D. et al Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence. PLoS Negl Trop Dis 2013; 7: e2207
- 19 Thomas SM, Beierkuhnlein C. Predicting ectotherm disease vector spread--benefits from multidisciplinary approaches and directions forward. Naturwissenschaften 2013; 100: 395-405