Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48(01): 15-23
DOI: 10.1055/a-1067-3845
Originalartikel

Auswirkungen hoher Umgebungstemperaturen auf laktierende Milchkühe – unter praxisüblichen Bedingungen in Norddeutschland von Bedeutung?

Consequences of high ambient temperatures for lactating dairy cows – an issue under practical conditions in Northern Germany?
Hanna Rieger
1   Institut für Tierernährung, Stiftung Tierärztliche Hochschule Hannover, Hannover
,
Mareike Kölln
1   Institut für Tierernährung, Stiftung Tierärztliche Hochschule Hannover, Hannover
,
Christian Sürie
2   Lehr- und Forschungsgut Ruthe, Stiftung Tierärztliche Hochschule Hannover, Ruthe/Sarstedt
,
Hartmut Mohwinkel
2   Lehr- und Forschungsgut Ruthe, Stiftung Tierärztliche Hochschule Hannover, Ruthe/Sarstedt
,
Christian Visscher
1   Institut für Tierernährung, Stiftung Tierärztliche Hochschule Hannover, Hannover
› Institutsangaben

Zusammenfassung

Ziel Erhebung quantitativer Daten zu Auswirkungen von hohen Umgebungstemperaturen auf Milchkühe unter praxisüblichen Bedingungen in Süd-Niedersachsen.

Material und Methoden Im Milchviehbestand des Lehr- und Forschungsgutes Ruthe der Stiftung Tierärztliche Hochschule Hannover wurden im Sommer 2018 (Mitte Juli bis Ende September) die stallklimatischen Bedingungen erfasst und die Futteraufnahme und Milchleistung der Herde sowie die Atemfrequenz und Rektaltemperatur von ausgewählten Kühen (n = 10) als Indikatoren für Hitzestress ermittelt. Darüber hinaus erfolgten Temperaturmessungen im Futter (Silagen, Teil-TMR) und in den Futterresten.

Ergebnisse Trotz der bereits zu Beginn des Beobachtungszeitraumes recht hohen Außentemperaturen (19,6–23,0° C im Tagesmittel) traten während einer Hitzeperiode (bis zu 27,9° C im Tagesmittel) deutliche Reduktionen in der Trockensubstanzaufnahme aus der Teil-TMR (ca. –15 %) und der Milchleistung (ca. –8 %) auf. Es bestand eine signifikante negative Korrelation zwischen der Trockensubstanzaufnahme aus der Teil-TMR und dem Temperature Humidity Index im Stall (Tagesmittelwert) sowie eine signifikante positive Korrelation zwischen der Trockensubstanzaufnahme aus der Teil-TMR und der Milchleistung. Diese Beziehungen waren jeweils besonders eng, wenn die Auswertung um 1 Tag versetzt erfolgte (Korrelationskoeffizienten nach Spearman: –0,774 und 0,766 bzw. –0,796 und 0,800; p < 0,0001). An Tagen mit hohen Außentemperaturen ließ sich bei einem erheblichen Anteil der untersuchten Einzeltiere (bis zu 100 %) eine Hyperthermie (> 39° C) feststellen.

Schlussfolgerung und klinische Relevanz Die Ergebnisse sprechen dafür, dass Hitzestress bei Milchkühen in den Sommermonaten auch in hiesigen Regionen unter extremen klimatischen Bedingungen in erheblichem Umfang auftritt und mit deutlichen Leistungseinbußen einhergehen kann. Aufgrund der aus der Literatur bekannten weitreichenden Konsequenzen von Hitzestress für die Tiergesundheit und das Leistungsniveau verdient die zeitweise hohe Frequenz des Auftretens einer Hyperthermie bei laktierenden Kühen in dieser Studie Beachtung. Für die tierärztliche Praxis ist die Differenzierung zwischen hyperthermischen und fieberhaften Zuständen unter diesen Bedingungen von besonderer Bedeutung.

Abstract

Objective The aim of the presented study was to gather quantitative data regarding the impact of high ambient temperatures on dairy cows under practical conditions in southern Lower Saxony.

Material and methods In summer 2018 (from mid of July to end of September), the climatic conditions in the dairy barn as well as the temperatures of feeds (silages and partial mixed ration, PMR) and feed leftovers were recorded on the Farm for Education and Research of the University of Veterinary Medicine Hannover in Ruthe. Furthermore, daily dry matter intake (of PMR) and milk yield on herd basis as well as respiration rate and rectal temperature of 10 selected cows were measured as indicators for heat stress.

Results During a heat period (daily average temperature up to 27.9° C) dry matter intake (PMR) and milk yield were reduced by about 15 % and 8 %, respectively although ambient temperatures had already been relatively high at the beginning of the observation period (daily average temperature between 19.6 and 23.0° C). Daily dry matter intake of PMR was negatively correlated with daily average temperature-humidity index in the barn (Spearman’s correlation coefficient: –0.774, p < 0.0001) and positively correlated with daily milk yield (Spearman’s correlation coefficient: 0.766, p < 0.0001). Correlation coefficients were slightly higher when a 1-day time lag was considered (Spearman’s correlation coefficient: –0.796 and 0.800, respectively; p < 0.0001). During the heat period hyperthermia (> 39° C) was frequently recorded in lactating cows (up to 100 %).

Conclusion and clinical relevance The presented results indicate that heat stress in dairy cows may occur to a considerable extent under extreme climatic conditions also in the region of Northern Germany. In consequence, this is associated with a significant decrease in performance. As severe and long-lasting effects of heat stress on health and performance of dairy cows are well described in the literature, especially the temporarily high prevalence of hyperthermia should be taken seriously. Under these circumstances, differentiating between hyperthermia and fever is of special importance for veterinary practitioners.



Publikationsverlauf

Eingereicht: 09. Mai 2019

Angenommen: 06. Oktober 2019

Artikel online veröffentlicht:
14. Februar 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Das R, Sailo L, Verma N. et al. Impact of heat stress on health and performance of dairy animals: A review. Veterinary World 2016; 9: 260-268 DOI: doi:10.14202/vetworld.2016.260–268.
  • 2 Polsky L, von Keyserlingk MAG. Invited review: Effects of heat stress on dairy cattle welfare. J Dairy Sci 2017; 100: 8645-8657 doi:10.3168/jds.2017–12651
  • 3 Tao S, Dahl GE. Invited review: Heat stress effects during late gestation on dry cows and their calves. J Dairy Sci 2013; 96: 4079-4093 doi:10.3168/jds.2012–6278
  • 4 Amstalden M, Garcia MR, Williams SW. et al. Leptin Gene Expression, Circulating Leptin, and Luteinizing Hormone Pulsatility Are Acutely Responsive to Short-Term Fasting in Prepubertal Heifers: Relationships to Circulating Insulin and Insulin-Like Growth Factor I1. Biol Reprod 2000; 63: 127-133 DOI: doi:10.1095/biolreprod63.1.127.
  • 5 Robinson PH, Sniffen CJ, Soest PJV. Influence of level of feed intake on digestion and bacterial yield in the forestomachs of dairy cattle. Can J Anim Sci 1985; 65: 437-444 doi:10.4141/cjas85–051
  • 6 Cowley FC, Barber DG, Houlihan AV. et al. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J Dairy Sci 2015; 98: 2356-2368 DOI: doi:10.3168/jds.2014–8442.
  • 7 Gao ST, Guo J, Quan SY. et al. The effects of heat stress on protein metabolism in lactating Holstein cows. J Dairy Sci 2017; 100: 5040-5049 DOI: doi:10.3168/jds.2016–11913.
  • 8 Wheelock JB, Rhoads RP, VanBaale MJ. et al. Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci 2010; 93: 644-655 DOI: doi:10.3168/jds.2009–2295.
  • 9 Rhoads ML, Rhoads RP, VanBaale MJ. et al. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci 2009; 92: 1986-1997 DOI: doi:10.3168/jds.2008–1641.
  • 10 Do Amaral B, Connor E, Tao S. et al. Heat-stress abatement during the dry period: Does cooling improve transition into lactation?. J Dairy Sci 2009; 92: 5988-5999
  • 11 Monteiro APA, Tao S, Thompson IMT. et al. In utero heat stress decreases calf survival and performance through the first lactation. J Dairy Sci 2016; 99: 8443-8450 DOI: doi:10.3168/jds.2016–11072.
  • 12 Tao S, Orellana RM, Weng X. et al. Symposium review: The influences of heat stress on bovine mammary gland function. J Dairy Sci 2018; 101: 1-13 DOI: doi:10.3168/jds.2017–13727.
  • 13 Allen JD, Hall LW, Collier RJ. et al. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J Dairy Sci 2015; 98: 118-127 DOI: doi:10.3168/jds.2013–7704.
  • 14 Cook NB, Mentink RL, Bennett TB. et al. The Effect of Heat Stress and Lameness on Time Budgets of Lactating Dairy Cows. J Dairy Sci 2007; 90: 1674-1682 DOI: doi:10.3168/jds.2006–634.
  • 15 Calamari L, Abeni F, Calegari F. et al. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 2. Blood minerals and acid-base chemistry. Int J Biometeorol 2007; 52: 97-107 DOI: doi:10.1007/s00484–007–0097–4.
  • 16 Schneider PL, Beede DK, Wilcox CJ. et al. Influence of Dietary Sodium and Potassium Bicarbonate and Total Potassium on Heat-Stressed Lactating Dairy Cows. J Dairy Sci 1984; 67: 2546-2553 DOI: doi:10.3168/jds.S0022–0302(84)81611–2.
  • 17 Schneider P, Beede D, Wilcox C. Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments. J Anim Sci 1988; 66: 112-125
  • 18 de Andrade Ferrazza R, Mogollón Garcia HD, Vallejo Aristizábal VH. et al. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress. J Therm Biol 2017; 66: 68-80 DOI: doi:10.1016/j.jtherbio.2017.03.014.
  • 19 Spiers DE, Spain JN, Sampson JD. et al. Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. J Therm Biol 2004; 29: 759-764 DOI: doi:10.1016/j.jtherbio.2004.08.051.
  • 20 Lamp O, Derno M, Otten W. et al. Metabolic heat stress adaption in transition cows: Differences in macronutrient oxidation between late-gestating and early-lactating German Holstein dairy cows. PLoS One 2015; 10: e0125264
  • 21 Gorniak T, Meyer U, Südekum K-H. et al. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch Anim Nutr 2014; 68: 358-369 DOI: doi:10.1080/1745039X.2014.950451.
  • 22 West JW, Mullinix BG, Bernard JK. Effects of Hot, Humid Weather on Milk Temperature, Dry Matter Intake, and Milk Yield of Lactating Dairy Cows. J Dairy Sci 2003; 86: 232-242 doi:10.3168/jds.S0022–0302(03)73602–9
  • 23 Ammer S, Lambertz C, Soosten D. et al. Impact of diet composition and temperature-humidity index on water and dry matter intake of high-yielding dairy cows. J Anim Physiol Anim Nutr 2018; 102: 103-113
  • 24 Min L, Cheng J-b, Shi B-l. et al. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows. Journal of Zhejiang University-SCIENCE B 2015; 16: 541-548 DOI: doi:10.1631/jzus.B1400341.
  • 25 El-Nouty FD, Elbanna IM, Davis TP. et al. Aldosterone and ADH response to heat and dehydration in cattle. J Appl Physiol 1980; 48: 249-255 DOI: doi:10.1152/jappl.1980.48.2.249.
  • 26 Guo JR, Monteiro APA, Weng XS. et al. Short communication: Effect of maternal heat stress in late gestation on blood hormones and metabolites of newborn calves. J Dairy Sci 2016; 99: 6804-6807 DOI: doi:10.3168/jds.2016–11088.
  • 27 Laporta J, Fabris TF, Skibiel AL. et al. In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. J Dairy Sci 2017; 100: 2976-2984 DOI: doi:10.3168/jds.2016–11993.
  • 28 Monteiro APA, Tao S, Thompson IM. et al. Effect of heat stress during late gestation on immune function and growth performance of calves: Isolation of altered colostral and calf factors. J Dairy Sci 2014; 97: 6426-6439 DOI: doi:10.3168/jds.2013–7891.
  • 29 Strong RA, Silva EB, Cheng HW. et al. Acute brief heat stress in late gestation alters neonatal calf innate immune functions. J Dairy Sci 2015; 98: 7771-7783 DOI: doi:10.3168/jds.2015–9591.
  • 30 Tao S, Monteiro APA, Thompson IM. et al. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. J Dairy Sci 2012; 95: 7128-7136 DOI: doi:10.3168/jds.2012–5697.
  • 31 Biffani S, Bernabucci U, Vitali A. et al. Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows. J Dairy Sci 2016; 99: 5837-5843 DOI: doi:10.3168/jds.2015–10491.
  • 32 Schüller LK, Burfeind O, Heuwieser W. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology 2014; 81: 1050-1057 doi:10.1016/j.theriogenology.2014.01.029
  • 33 Schüller LK, Burfeind O, Heuwieser W. Effect of short- and long-term heat stress on the conception risk of dairy cows under natural service and artificial insemination breeding programs. J Dairy Sci 2016; 99: 2996-3002 doi:10.3168/jds.2015–10080
  • 34 Aengwanich W, Kongbuntad W, Boonsorn T. Effects of shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle. Int J Biometeorol 2011; 55: 741-748 doi:10.1007/s00484–010–0389-y
  • 35 Bernabucci U, Ronchi B, Lacetera N. et al. Markers of Oxidative Status in Plasma and Erythrocytes of Transition Dairy Cows During Hot Season. J Dairy Sci 2002; 85: 2173-2179 DOI: doi:10.3168/jds.S0022–0302(02)74296–3.
  • 36 Gantner V, Bobic T, Gantner R. et al. Differences in response to heat stress due to production level and breed of dairy cows. Int J Biometeorol 2017; 61: 1675-1685 DOI: doi:10.1007/s00484–017–1348–7.
  • 37 Lambertz C, Sanker C, Gauly M. Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. J Dairy Sci 2014; 97: 319-329 doi:10.3168/jds.2013–7217
  • 38 Min L, Cheng J, Zhao S. et al. Plasma-based proteomics reveals immune response, complement and coagulation cascades pathway shifts in heat-stressed lactating dairy cows. J Proteomics 2016; 146: 99-108 DOI: doi:10.1016/j.jprot.2016.06.008.
  • 39 Min L, Zheng N, Zhao S. et al. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis. Biochem Biophys Res Commun 2016; 471: 296-302 DOI: doi:10.1016/j.bbrc.2016.01.185.
  • 40 do Amaral BC, Connor EE, Tao S. et al. Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J Dairy Sci 2011; 94: 86-96 DOI: doi:10.3168/jds.2009–3004.
  • 41 Brügemann K, Gernand E, König von Borstel U. et al. Defining and evaluating heat stress thresholds in different dairy cow production systems. Arch Anim Breed 2012; 55: 13-24 DOI: doi:10.5194/aab-55–13–2012.
  • 42 Herbut P, Angrecka S, Walczak J. Environmental parameters to assessing of heat stress in dairy cattle – a review. Int J Biometeorol 2018; 62: 2089-2097 doi:10.1007/s00484–018–1629–9
  • 43 Berman A, Horovitz T, Kaim M. et al. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress. Int J Biometeorol 2016; 60: 1453-1462 DOI: doi:10.1007/s00484–016–1136–9.
  • 44 National Research Council. Temperature-Humidity Index (THI). In: A guide to environmental research on animals. Washington: National Academies; 1971: 77
  • 45 Vitali A, Bernabucci U, Nardone A. et al. Effect of season, month and temperature humidity index on the occurrence of clinical mastitis in dairy heifers. Adv Anim Biosci 2016; 7: 250-252 DOI: doi:10.1017/S2040470016000315.
  • 46 Vitali A, Segnalini M, Bertocchi L. et al. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J Dairy Sci 2009; 92: 3781-3790
  • 47 Morignat E, Perrin J-B, Gay E. et al. Assessment of the impact of the 2003 and 2006 heat waves on cattle mortality in France. PLoS One 2014; 9: e93176
  • 48 Dirksen G, Gründer H-D, Grunert E. et al. Die klinische Untersuchung des Rindes. 4. (unveränderte). Aufl.. Stuttgart: Enke Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG; 2012
  • 49 Van Es AJH. Feed evaluation for dairy cows. Livestock Production Science 1975; 2: 95-107 doi:10.1016/0301–6226(75)90029–9
  • 50 Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. 1. Aufl. Aufl.. Frankfurt am Main: DLG-Verlag; 2001
  • 51 Curtis AK, Scharf B, Eichen PA. et al. Relationships between ambient conditions, thermal status, and feed intake of cattle during summer heat stress with access to shade. J Therm Biol 2017; 63: 104-111 DOI: doi:10.1016/j.jtherbio.2016.11.015.
  • 52 Tapki İ, Şahin A. Comparison of the thermoregulatory behaviours of low and high producing dairy cows in a hot environment. Appl Anim Behav Sci 2006; 99: 1-11 doi:10.1016/j.applanim.2005.10.003
  • 53 Smith DL, Smith T, Rude BJ. et al. Short communication: Comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J Dairy Sci 2013; 96: 3028-3033 DOI: doi:10.3168/jds.2012–5737.
  • 54 Bernabucci U, Biffani S, Buggiotti L. et al. The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci 2014; 97: 471-486 DOI: doi:10.3168/jds.2013–6611.
  • 55 Wang Y, Huang J, Xia P. et al. Genetic variations of HSBP1 gene and its effect on thermal performance traits in Chinese Holstein cattle. Mol Biol Rep 2013; 40: 3877-3882
  • 56 Li Q, Han J, Du F. et al. Novel SNPs in HSP70A1A gene and the association of polymorphisms with thermo tolerance traits and tissue specific expression in Chinese Holstein cattle. Mol Biol Rep 2011; 38: 2657-2663