Subscribe to RSS
DOI: 10.1055/a-1061-7349
Update of Genetic and Molecular Causes of Adrenocortical Hyperplasias Causing Cushing Syndrome

Abstract
Bilateral hyperplasias of the adrenal cortex are rare causes of chronic endogenous hypercortisolemia also called Cushing syndrome. These hyperplasias have been classified in two categories based on the adrenal nodule size: the micronodular types include Primary Pigmented Nodular Adrenocortical Disease (PPNAD) and isolated Micronodular Adrenal Disease (iMAD) and the macronodular also named Primary Bilateral Macronodular Adrenal Hyperplasia (PBMAH). This review discusses the genetic and molecular causes of these different forms of hyperplasia that involve mutations and dysregulation of various regulators of the cAMP/protein kinase A (PKA) pathway. PKA signaling is the main pathway controlling cortisol secretion in adrenocortical cells under ACTH stimulation. Although mutations of the regulatory subunit R1α of PKA (PRKAR1A) is the main cause of familial and sporadic PPNAD, inactivation of two cAMP-binding phosphodiesterases (PDE11A and PDE8B) are associated with iMAD even if they are also found in PPNAD and PBMAH cases. Interestingly, PBMAH that is observed in multiple familial syndrome such as APC, menin, fumarate hydratase genes, has initially been associated with the aberrant expression of G-protein coupled receptors (GPCR) leading to an activation of cAMP/PKA pathway. However, more recently, the discovery of germline mutations in Armadillo repeat containing protein 5 (ARMC5) gene in 25–50% of PBMAH patients highlights its importance in the development of PBMAH. The potential relationship between ARMC5 mutations and aberrant GPCR expression is discussed as well as the potential other causes of PBMAH.
Publication History
Received: 07 September 2019
Accepted: 05 November 2019
Article published online:
25 February 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1
Lacroix A,
Bourdeau I,
Lampron A.
et al. Aberrant G-protein coupled receptor expression in relation to adrenocortical
overfunction. Clin Endocrinol (Oxf) 2010; 73: 1-15
MissingFormLabel
- 2
Lodish M.
Cushingʼs syndrome in childhood: Update on genetics, treatment, and
outcomes. Curr Opin Endocrinol Diabetes Obes 2015; 22: 48-54
MissingFormLabel
- 3
Stratakis CA,
Boikos SA.
Genetics of adrenal tumors associated with Cushingʼs syndrome: A new
classification for bilateral adrenocortical hyperplasias. Nat Clin Pract Endocrinol
Metab 2007; 3: 748-757
MissingFormLabel
- 4
Horvath A,
Boikos S,
Giatzakis C.
et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase
11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 2006; 38:
794-800
MissingFormLabel
- 5
Kamilaris CDC,
Faucz FR,
Voutetakis A.
et al. Carney complex. Exp Clin Endocrinol Diabetes 2019; 127: 156-164
MissingFormLabel
- 6
Stratakis CA.
Clinical genetics of multiple endocrine neoplasias, Carney complex and related
syndromes. J Endocrinol Invest 2001; 24: 370-383
MissingFormLabel
- 7
Horvath A,
Bertherat J,
Groussin L.
et al. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha
of protein kinase A (PRKAR1A): An update. Hum Mutat 2010; 31: 369-379
MissingFormLabel
- 8
Stratakis CA,
Carney JA,
Lin JP.
et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome.
Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest
1996; 97: 699-705
MissingFormLabel
- 9
Casey M,
Mah C,
Merliss AD.
et al. Identification of a novel genetic locus for familial cardiac myxomas and Carney
complex. Circulation 1998; 98: 2560-2566
MissingFormLabel
- 10
Kirschner LS,
Carney JA,
Pack SD.
et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory
subunit in patients with the Carney complex. Nat Genet 2000; 26: 89-92
MissingFormLabel
- 11
Bertherat J,
Horvath A,
Groussin L.
et al. Mutations in regulatory subunit type 1A of cyclic adenosine
5ʼ-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353
patients and 80 different genotypes. J Clin Endocrinol Metab 2009; 94: 2085-2091
MissingFormLabel
- 12
Horvath A,
Bertherat J,
Groussin L.
et al. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha
of protein kinase A (PRKAR1A): An update. Hum Mutat 2010; 31: 369-379
MissingFormLabel
- 13
Kirschner LS,
Sandrini F,
Monbo J.
et al. Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients
with the carney complex. Hum Mol Genet 2000; 9: 3037-3046
MissingFormLabel
- 14
Amieux PS,
McKnight GS.
The essential role of RI alpha in the maintenance of regulated PKA activity. Ann NY
Acad Sci 2002; 968: 75-95
MissingFormLabel
- 15
Bertherat J,
Groussin L,
Sandrini F.
et al. Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in
sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein
kinase A expression and activity. Cancer Res 2003; 63: 5308-5319
MissingFormLabel
- 16
Sahut-Barnola I,
de Joussineau C,
Val P.
et al. Cushingʼs syndrome and fetal features resurgence in adrenal cortex-specific
Prkar1a knockout mice. PLoS Genet 2010; 6: e1000980
MissingFormLabel
- 17
Dumontet T,
Sahut-Barnola I,
Septier A.
et al. PKA signaling drives reticularis differentiation and sexually dimorphic adrenal
cortex renewal. JCI Insight 2018; 3: e98394
MissingFormLabel
- 18
de Joussineau C,
Sahut-Barnola I,
Tissier F.
et al. mTOR pathway is activated by PKA in adrenocortical cells and participates in
vivo to apoptosis resistance in primary pigmented nodular adrenocortical disease
(PPNAD). Hum Mol Genet 2014; 23: 5418-5428
MissingFormLabel
- 19
Mavrakis M,
Lippincott-Schwartz J,
Stratakis CA.
et al. Depletion of type IA regulatory subunit (RIalpha) of protein kinase A (PKA)
in
mammalian cells and tissues activates mTOR and causes autophagic deficiency. Hum Mol
Genet 2006; 15: 2962-2971
MissingFormLabel
- 20
de Joussineau C,
Sahut-Barnola I,
Tissier F.
et al. mTOR pathway is activated by PKA in adrenocortical cells and participates in
vivo to apoptosis resistance in primary pigmented nodular adrenocortical disease
(PPNAD). Hum Mol Genet 2014; 23: 5418-5428
MissingFormLabel
- 21
Almeida MQ,
Stratakis CA.
Carney complex and other conditions associated with micronodular adrenal
hyperplasias. Best Pract Res Clin Endocrinol Metab 2010; 24: 907-914
MissingFormLabel
- 22
Stratakis CA.
cAMP/PKA signaling defects in tumors: genetics and tissue-specific
pluripotential cell-derived lesions in human and mouse. Molecular and Cellular Endocrinology
2013; 371: 208-220
MissingFormLabel
- 23
Wayman C,
Phillips S,
Lunny C.
et al. Phosphodiesterase 11 (PDE11) regulation of spermatozoa physiology. Int J Impot
Res 2005; 17: 216-223
MissingFormLabel
- 24
Ceyhan O,
Birsoy K,
Hoffman CS.
Identification of biologically active PDE11-selective inhibitors using a
yeast-based high-throughput screen. Chem Biol 2012; 19: 155-163
MissingFormLabel
- 25
Horvath A,
Giatzakis C,
Tsang K.
et al. A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia
is expressed widely in human and mouse tissues: A novel PDE8B isoform in human
adrenal cortex. Eur J Hum Genet 2008; 16: 1245-1253
MissingFormLabel
- 26
Lakics V,
Karran EH,
Boess FG.
Quantitative comparison of phosphodiesterase mRNA distribution in human brain
and peripheral tissues. Neuropharmacology 2010; 59: 367-374
MissingFormLabel
- 27
Rothenbuhler A,
Horvath A,
Libe R.
et al. Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a
cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a
cohort of patients with adrenal tumours. Clin Endocrinol 2012; 77: 195-199
MissingFormLabel
- 28
Tsai LC,
Shimizu-Albergine M,
Beavo JA.
The high-affinity cAMP-specific phosphodiesterase 8B controls steroidogenesis in
the mouse adrenal gland. Mol Pharmacol 2011; 79: 639-648
MissingFormLabel
- 29
Vezzosi D,
Libe R,
Baudry C.
et al. Phosphodiesterase 11A (PDE11A) gene defects in patients with acth-independent
macronodular adrenal hyperplasia (AIMAH): Functional variants may contribute to
genetic susceptibility of bilateral adrenal tumors. J Clin Endocrinol Metab 2012;
97: E2063-E2069
MissingFormLabel
- 30
Wilmot Roussel H,
Vezzosi D,
Rizk-Rabin M.
et al. Identification of gene expression profiles associated with cortisol secretion
in
adrenocortical adenomas. J Clin Endocrinol Metab 2013; 98: E1109-E1121
MissingFormLabel
- 31
Szarek E,
Stratakis CA.
Phosphodiesterases and adrenal Cushing in mice and humans. Horm Metab Res 2014; 46:
863-868
MissingFormLabel
- 32
Louiset E,
Duparc C,
Young J.
et al. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N
Eng. J Med 2013; 369: 2115-2125
MissingFormLabel
- 33
Lacroix A.
Heredity and cortisol regulation in bilateral macronodular adrenal hyperplasia.
N Eng. J Med 2013; 369: 2147-2149
MissingFormLabel
- 34
Lacroix A.
ACTH-independent macronodular adrenal hyperplasia. Best Pract Res Clin Endocrinol
Metab 2009; 23: 245-259
MissingFormLabel
- 35
Hsiao HP,
Kirschner LS,
Bourdeau I.
et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and
atypical glucocorticoid hormone secretion in adrenocorticotropin-independent
macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin
Endocrinol Metab 2009; 94: 2930-2937
MissingFormLabel
- 36
Libe R,
Coste J,
Guignat L.
et al. Aberrant cortisol regulations in bilateral macronodular adrenal hyperplasia:
a
frequent finding in a prospective study of 32 patients with overt or subclinical
Cushingʼs syndrome. Eur J Endocrinol 2010; 163: 129-138
MissingFormLabel
- 37
Espiard S,
Ragazzon B,
Bertherat J.
Protein kinase A alterations in adrenocortical tumors. Horm Metab Res 2014; 46: 869-875
MissingFormLabel
- 38
Swords FM,
Noon LA,
King PJ.
et al. Constitutive activation of the human ACTH receptor resulting from a synergistic
interaction between two naturally occurring missense mutations in the MC2R
gene. Mol Cell Endocrinol 2004; 213: 149-154
MissingFormLabel
- 39
Swords FM,
Baig A,
Malchoff DM.
et al. Impaired desensitization of a mutant adrenocorticotropin receptor associated
with apparent constitutive activity. Mol Endocrinol 2002; 16: 2746-2753
MissingFormLabel
- 40
St-Jean M,
Ghorayeb NE,
Bourdeau I.
et al. Aberrant G-protein coupled hormone receptor in adrenal diseases. Best Pract
Res Clin Endocrinol Metab 2018; 32: 165-187
MissingFormLabel
- 41
El Ghorayeb N,
Bourdeau I,
Lacroix A.
Multiple aberrant hormone receptors in Cushingʼs syndrome. Eur J Endocrinol 2015;
173: M45-M60
MissingFormLabel
- 42
Lecoq AL,
Stratakis CA,
Viengchareun S.
et al. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent
Cushingʼs syndrome. JCI Insight 2017; 2
MissingFormLabel
- 43
Candida Barisson Villares Fragoso M,
Pontes Cavalcante I,
Meneses Ferreira A.
et al. Genetics of primary macronodular adrenal hyperplasia. Presse Med 2018; 47:
e139-e149
MissingFormLabel
- 44
Fragoso MC,
Domenice S,
Latronico AC.
et al. Cushingʼs syndrome secondary to adrenocorticotropin-independent macronodular
adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol
Metab 2003; 88: 2147-2151
MissingFormLabel
- 45
Almeida MQ,
Azevedo MF,
Xekouki P.
et al. Activation of cyclic AMP signaling leads to different pathway alterations in
lesions of the adrenal cortex caused by germline PRKAR1A defects vs. those due
to somatic GNAS mutations. J Clin Endocrinol Metab 2012; 97: E687-E693
MissingFormLabel
- 46
Villares Fragoso MC,
Wanichi IQ,
Cavalcante IP.
et al. The Role of gsp Mutations on the Development of Adrenocortical Tumors and
Adrenal Hyperplasia. Front Endocrinol (Lausanne) 2016; 7: 104
MissingFormLabel
- 47
Hsiao HP,
Kirschner LS,
Bourdeau I.
et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and
atypical glucocorticoid hormone secretion in adrenocorticotropin-independent
macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin
Endocrinol Metab 2009; 94: 2930-2937
MissingFormLabel
- 48
Gaujoux S,
Pinson S,
Gimenez-Roqueplo AP.
et al. Inactivation of the APC gene is constant in adrenocortical tumors from patients
with familial adenomatous polyposis but not frequent in sporadic adrenocortical
cancers. Clin Cancer Res 2010; 16: 5133-5141
MissingFormLabel
- 49
Heaton JH,
Wood MA,
Kim AC.
et al. Progression to adrenocortical tumorigenesis in mice and humans through
insulin-like growth factor 2 and beta-catenin. Am J Pathol 2012; 181: 1017-1033
MissingFormLabel
- 50
Berthon A,
Martinez A,
Bertherat J.
et al. Wnt/beta-catenin signalling in adrenal physiology and tumour
development. Mol Cell Endocrinol 2012; 351: 87-95
MissingFormLabel
- 51
Concolino P,
Costella A,
Capoluongo E.
Multiple endocrine neoplasia type 1 (MEN1): An update of 208 new germline
variants reported in the last nine years. Cancer Genet 2016; 209: 36-41
MissingFormLabel
- 52
Crabtree JS,
Scacheri PC,
Ward JM.
et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple
endocrine tumors. Proc Natl Acad Sci USA 2001; 98: 1118-1123
MissingFormLabel
- 53
Harding B,
Lemos MC,
Reed AA.
et al. Multiple endocrine neoplasia type 1 knockout mice develop parathyroid,
pancreatic, pituitary and adrenal tumours with hypercalcaemia, hypophosphataemia
and hypercorticosteronaemia. Endocr Relat Cancer 2009; 16: 1313-1327
MissingFormLabel
- 54
Drougat L,
Espiard S,
Bertherat J.
Genetics of primary bilateral macronodular adrenal hyperplasia: A model for
early diagnosis of Cushingʼs syndrome?. Eur J Endocrinol 2015; 173: M121-M131
MissingFormLabel
- 55
Gatta-Cherifi B,
Chabre O,
Murat A.
et al. Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe dʼetude
des
Tumeurs Endocrines database. Eur J Endocrinol 2012; 166: 269-279
MissingFormLabel
- 56
Shuch B,
Ricketts CJ,
Vocke CD.
et al. Adrenal nodular hyperplasia in hereditary leiomyomatosis and renal cell
cancer. J Urol 2013; 189: 430-435
MissingFormLabel
- 57
Assie G,
Libe R,
Espiard S.
et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushingʼs syndrome.
N Eng J Med 2013; 369: 2105-2114
MissingFormLabel
- 58
Alencar GA,
Lerario AM,
Nishi MY.
et al. ARMC5 Mutations are a frequent cause of primary macronodular adrenal
hyperplasia. J Clin Endocrinol Metab 2014; jc20134237
MissingFormLabel
- 59
Faucz FR,
Zilbermint M,
Lodish MB.
et al. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat
containing 5 (ARMC5) Gene: A clinical and genetic investigation. J Clin Endocrinol
Metab 2014; 99: E1113-E1119
MissingFormLabel
- 60
Espiard S,
Drougat L,
Libe R.
ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia:
Clinical and functional consequences. J Clin Endocrinol Metab 2015; 100: E926-E935
MissingFormLabel
- 61
Elbelt U,
Trovato A,
Kloth M.
et al. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent
inactivating germline and somatic mutations are associated with both primary
macronodular adrenal hyperplasia and meningioma. J Clin Endocrinol Metab 2015; 100:
E119-E128
MissingFormLabel
- 62
Gagliardi L,
Schreiber AW,
Hahn CN.
et al. Armc5 mutations are common in familial bilateral macronodular adrenal
hyperplasia. J Clin Endocrinol Metab 2014; jc20141265
MissingFormLabel
- 63
Albiger NM,
Regazzo D,
Rubin B.
et al. A multicenter experience on the prevalence of ARMC5 mutations in patients with
primary bilateral macronodular adrenal hyperplasia: From genetic
characterization to clinical phenotype. Endocrine 2017; 55: 959-968
MissingFormLabel
- 64
Bourdeau I,
Oble S,
Magne F.
et al. ARMC5 mutations in a large French-Canadian family with cortisol-secreting
beta-adrenergic/vasopressin responsive bilateral macronodular adrenal
hyperplasia. Eur J Endocrinol 2016; 174: 85-96
MissingFormLabel
- 65
Correa R,
Zilbermint M,
Berthon A.
et al. The ARMC5 gene shows extensive genetic variance in primary macronodular
adrenocortical hyperplasia. Eur J Endocrinol 2015; 173: 435-440
MissingFormLabel
- 66
Yu L,
Zhang J,
Guo X.
et al. ARMC5 mutations in familial and sporadic primary bilateral macronodular adrenal
hyperplasia. PLoS One 2018; 13: e0191602
MissingFormLabel
- 67
Berthon A,
Hannah-Shmouni F,
Maria AG.
et al. High expression of adrenal P450 aromatase (CYP19A1) in association with
ARMC5-primary bilateral macronodular adrenocortical hyperplasia. J Steroid Biochem
Mol Biol 2019; 191: 105316
MissingFormLabel
- 68
Gagliardi L,
Schreiber AW,
Hahn CN.
et al. ARMC5 mutations are common in familial bilateral macronodular adrenal
hyperplasia. J Clin Endocrinol Metab 2014; 99: E1784-E1792
MissingFormLabel
- 69
Rego T,
Fonseca F,
Espiard S.
et al. ARMC5 mutation in a Portuguese family with primary bilateral macronodular
adrenal hyperplasia (PBMAH). Endocrinol Diabetes Metab Case Rep 2017; pii 16-0135
MissingFormLabel
- 70
Suzuki S,
Tatsuno I,
Oohara E.
et al. Germline deletion of Armc5 in familial primary macronodular adrenal
hyperplasia. Endocr Pract 2015; 21: 1152-1160
MissingFormLabel
- 71
Cavalcante IP,
Nishi M,
Zerbini MCN.
et al. The role of ARMC5 in human cell cultures from nodules of primary macronodular
adrenocortical hyperplasia (PMAH). Mol Cell Endocrinol 2018; 460: 36-46
MissingFormLabel
- 72
Berthon A,
Faucz FR,
Espiard S.
et al. Age-dependent effects of Armc5 haploinsufficiency on adrenocortical
function. Hum Mol Genet 2017; 26: 3495-3507
MissingFormLabel
- 73
Hu Y,
Lao L,
Mao J.
et al. Armc5 deletion causes developmental defects and compromises T-cell immune
responses. Nat Commun 2017; 8: 13834
MissingFormLabel
- 74
Thomas M,
Keramidas M,
Monchaux E.
et al. Dual hormonal regulation of endocrine tissue mass and vasculature by
adrenocorticotropin in the adrenal cortex. Endocrinology 2004; 145: 4320-4329
MissingFormLabel
- 75
Bonnet-Serrano F,
Bertherat J.
Genetics of tumors of the adrenal cortex. Endocr Relat Cancer 2018; 25: R131-R152
MissingFormLabel
- 76
Beuschlein F,
Fassnacht M,
Assie G.
et al. Constitutive activation of PKA catalytic subunit in adrenal Cushingʼs syndrome.
N Eng. J Med 2014; 370: 1019-1028
MissingFormLabel
- 77
Lodish MB,
Yuan B,
Levy I.
et al. Germline PRKACA amplification causes variable phenotypes that may depend on
the
extent of the genomic defect: Molecular mechanisms and clinical
presentations. Eur J Endocrinol 2015; 172: 803-811
MissingFormLabel
- 78
Carney JA,
Lyssikatos C,
Lodish MB.
et al. Germline PRKACA amplification leads to Cushing syndrome caused by 3
adrenocortical pathologic phenotypes. Hum Pathol 2015; 46: 40-49
MissingFormLabel
- 79
Stratakis CA.
E pluribus unum? The main protein kinase A catalytic subunit (PRKACA), a likely
oncogene, and cortisol-producing tumors. J Clin Endocrinol Metab 2014; 99: 3629-3633
MissingFormLabel
- 80
Collier LS,
Suyama K,
Anderson JH.
et al. Drosophila Costal1 mutations are alleles of protein kinase A that modulate
hedgehog signaling. Genetics 2004; 167: 783-796
MissingFormLabel