Subscribe to RSS
DOI: 10.1055/a-1045-5178
Hapalindoles from the Cyanobacterium Hapalosiphon sp. Inhibit T Cell Proliferation
Supported by: Deutsche Forschungsgemeinschaft INST 271/388-1Supported by: Software AG Foundation
Supported by: DAMUS-Donata e.V.
Supported by: Bundesministerium für Bildung und Forschung ANoBIn-16GW0115
Publication History
received 06 June 2019
revised 05 November 2019
accepted 06 November 2019
Publication Date:
27 November 2019 (online)
Abstract
Novel immunomodulating agents are currently sought after for the treatment of autoimmune diseases and cancers. In this context, a screening campaign of a collection of 575 cyanobacteria extracts for immunomodulatory effects has been conducted. The screening resulted in several active extracts. Here we report the results of subsequent studies on an extract from the cyanobacterium Hapalosiphon sp. CBT1235. We identified 5 hapalindoles as the compounds responsible for the observed immunomodulatory effect. These indole alkaloids are produced by several strains of the cyanobacterial family Hapalosiphonaceae. They are known for their anti-infective, cytotoxic, and other bioactivities. Modulation of the activity of human immune cells has not yet been described. The immunomodulatory activity of the hapalindoles was characterized in vitro using flow cytometry-based measurements of T cell proliferation after carboxyfluorescein diacetate succinimidyl ester staining, and apoptosis and necrosis induction after annexin V/propidium iodide staining. The most potent compound, hapalindole A, reduced T cell proliferation with an IC50 of 1.56 µM, while relevant levels of apoptosis were measurable only at 10-fold higher concentrations. Hapalindole A-formamide and hapalindole J-formamide, isolated for the first time from a natural source, had much lower activity than the nonformylated derivatives while, at the same time, being less selective for antiproliferative over apoptotic effects.
* These authors contributed equally to this work.
§ These authors contributed equally to this work.
Supporting Information
- Supporting Information
1H, 13C, HSQC, HMBC and NOESY spectra, MS data as well as a chromatogram of the micro-fractionation and the results of the inhibition of T cell proliferation by different Hapalosiphon sp. CBT1235 fractions are available as Supporting Information.
-
References
- 1 Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria – a prolific source of natural products. Tetrahedron 2001; 57: 9347-9377
- 2 Dixit RB, Suseela MR. Cyanobacteria: potential candidates for drug discovery. Antonie Van Leeuwenhoek 2013; 103: 947-961
- 3 Welker M, Dittmann E, von Döhren H. Cyanobacteria as a source of natural products. Methods Enzymol 2012; 517: 23-46
- 4 Leao PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V. The chemical ecology of cyanobacteria. Nat Prod Rep 2012; 29: 372-391
- 5 Salvador-Reyes LA, Luesch H. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 2015; 32: 478-503
- 6 Niedermeyer TH. Anti-infective natural products from cyanobacteria. Planta Med 2015; 81: 1309-1325
- 7 Dittmann E, Gugger M, Sivonen K, Fewer DP. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol 2015; 23: 642-652
- 8 Walton K, Berry JP. Indole alkaloids of the stigonematales (cyanophyta): chemical diversity, biosynthesis and biological activity. Mar Drugs 2016; 14: 73
- 9 Moore RE, Cheuk C, Patterson GML. Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis . J Am Chem Soc 1984; 106: 6456-6457
- 10 Moore RE, Cheuk C, Yang XQG, Patterson GML, Bonjouklian R, Smitka TA, Mynderse JS, Foster RS, Jones ND, Swartzendruber JK, Deeter JB. Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte Hapalosiphon fontinalis . J Org Chem 1987; 291: 1036-1043
- 11 Schwartz RE, Hirsch CF, Springer JP, Pettibone DJ, Zink DL. Unusual cyclopropane-containing hapalindolinones from a cultured cyanobacterium. J Org Chem 1987; 52: 3704-3706
- 12 Moore RE, Yang XQG, Patterson GML, Bonjouklian R, Smitka TA. Hapalonamides and other oxidized hapalindoles from Hapalosiphon fontinalis . Phytochemistry 1989; 28: 1565-1567
- 13 Park A, Moore RE, Patterson GML. Fischerindole L, a new isonitrile from the terrestrial blue-green alga Fischerella muscicola . Tetrahedron Lett 1992; 33: 3257-3260
- 14 Smitka TA, Bonjouklian R, Doolin L, Jones ND, Deeter JB, Yoshida WY, Prinsep MR, Moore RE, Patterson GML. Ambiguine isonitriles, fungicidal hapalindole-type alkaloids from 3 genera of blue-green algae belonging to the Stigonemataceae. J Org Chem 1992; 57: 857-861
- 15 Stratmann K, Moore RE, Bonjouklian R, Deeter JB, Patterson GML, Shaffer S, Smith CD, Smitka TA. Welwitindolinones, unusual alkaloids from the blue-green algae Hapalosiphon welwitschii and Westiella intricata. Relationship to fischerindoles and hapalinodoles. J Am Chem Soc 1994; 116: 9935-9942
- 16 Huber U, Moore RE, Patterson GML. Isolation of a nitrile-containing indole alkaloid from the terrestrial blue-green alga Hapalosiphon delicatulus . J Nat Prod 1998; 61: 1304-1306
- 17 Asthana RK, Srivastava A, Singh AP, Singh SP, Nath G, Srivastava R, Srivastava BS. Identification of an antimicrobial entity from the cyanobacterium Fischerella sp. isolated from bark of Azadirachta indica (Neem) tree. J Appl Phycol 2006; 18: 33-39
- 18 Becher PG, Keller S, Jung G, Süssmuth RD, Jüttner F. Insecticidal activity of 12-epi-hapalindole J isonitrile. Phytochemistry 2007; 68: 2493-2497
- 19 Mo S, Krunic A, Chlipala G, Orjala J. Antimicrobial ambiguine isonitriles from the cyanobacterium Fischerella ambigua . J Nat Prod 2009; 72: 894-899
- 20 Mo S, Krunic A, Santarsiero BD, Franzblau SG, Orjala J. Hapalindole-related alkaloids from the cultured cyanobacterium Fischerella ambigua . Phytochemistry 2010; 71: 2116-2123
- 21 Kim H, Lantvit D, Hwang CH, Kroll DJ, Swanson SM, Franzblau SG, Orjala J. Indole alkaloids from 2 cultured cyanobacteria, Westiellopsis sp. and Fischerella muscicola . Bioorg Med Chem 2012; 20: 5290-5295
- 22 Kim H, Krunic A, Lantvit D, Shen Q, Kroll DJ, Swanson SM, Orjala J. Nitrile-containing fischerindoles from the cultured cyanobacterium Fischerella sp. Tetrahedron 2012; 68: 3205-3209
- 23 Walton K, Gantar M, Gibbs PDL, Schmale MC, Berry JP. Indole alkaloids from Fischerella inhibit vertebrate development in the zebrafish (Danio rerio) embryo model. Toxins (Basel) 2014; 6: 3568-3581
- 24 Raveh A, Carmeli S. Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J Nat Prod 2007; 70: 196-201
- 25 Bhat V, Dave A, MacKay JA, Rawal VH. The chemistry of hapalindoles, fischerindoles, ambiguines, and welwitindolinones. Alkaloids Chem Biol 2014; 73: 65-160
- 26 Klein D, Daloze D, Braekman JC, Hoffmann L, Demoulin V. New hapalindoles from the cyanophyte Hapalosiphon laingii . J Nat Prod 1995; 58: 1781-1785
- 27 Doan NT, Rickards RW, Rothschild JM, Smith GD, Thanh Doan N. Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix . J Appl Phycol 2000; 12: 409-416
- 28 Doan NT, Stewart PR, Smith GD. Inhibition of bacterial RNA polymerase by the cyanobacterial metabolites 12-epi-hapalindole E isonitrile and calothrixin A. FEMS Microbiol Lett 2001; 196: 135-139
- 29 Becher PG, Jüttner F. Insecticidal compounds of the biofilm-forming cyanobacterium Fischerella sp. (ATCC 43239). Environ Toxicol 2005; 20: 363-372
- 30 Cagide E, Becher PG, Louzao MC, Espiña B, Vieytes MR, Jüttner F, Botana LM. Hapalindoles from the cyanobacterium Fischerella: potential sodium channel modulators. Chem Res Toxicol 2014; 27: 1696-1706
- 31 Bonjouklian R, Moore RE, Patterson GML. Acid-catalyzed reactions of hapalindoles. J Org Chem 1988; 53: 5866-5870
- 32 Muratake H, Natsume M. Synthetic studies of marine alkaloids hapalindoles. Part I Total synthesis of (±)-hapalindoles J and M. Tetrahedron 1990; 46: 6331-6342
- 33 Schwartz E, Hirsch CF, Sesin DF, Flor JE, Chartrain M, Fromtling E, Harris GH, Salvatore MJ, Liesch JM, Yudin K. Pharmaceuticals from cultured algae. J Ind Microbiol 1990; 5: 113-124
- 34 Wagner MM, Shih C, Jordan A, Williams DC. In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines. Cancer Chemother Pharmacol 1999; 43: 115-125
- 35 Eggen M, Georg GI. The cryptophycins: their synthesis and anticancer activity. Med Res Rev 2002; 22: 85-101
- 36 Rohr J. Cryptophycin anticancer drugs revisited. ACS Chem Biol 2006; 1: 747-750
- 37 Fukuyama T, Chen X. Stereocontrolled synthesis of (−)-hapalindole G. J Am Chem Soc 1994; 116: 3125-3126
- 38 Chandra A, Johnston JN. Total synthesis of the chlorine-containing hapalindoles K, A, and G. Angew Chem Int Ed Engl 2011; 50: 7641-7644
- 39 Andersen RA. Algal culturing Techniques. Burlington, MA: Elsevier Academic Press; 2005