Zahnmedizin up2date 2019; 13(06): 559-569
DOI: 10.1055/a-1033-2862
Kieferorthopädie
Georg Thieme Verlag KG Stuttgart · New York

Die gestörte Durchblutung des Kieferknochens – ein Parameter für die Knochenheilung?

Werner Götz
,
Nils Heim
Further Information

Publication History

Publication Date:
11 December 2019 (online)

Bei allen chirurgischen Eingriffen am Kieferknochen ist eine gute Durchblutung für die Heilung eine wichtige Voraussetzung. Dies betrifft oral- und kieferchirurgische Operationen einschließlich augmentativer Verfahren sowie die Osseointegration oraler Implantate. Eine gestörte Durchblutung kann sich als Angiopathie, also ein „Gefäßleiden“, wie z. B. als Atherosklerose, der vorhandenen Gefäße, aber auch als Störung der für eine Wundheilung des Knochens wichtigen Neubildung (Vaskulogenese) oder Neuaussprossung von Blutgefäßen (Angiogenese) manifestieren. Allerdings stellt eine gestörte Durchblutung meist nur einen pathogenetischen Strang von Heilungsstörungen dar, die am sogenannten „kompromittierten“ Kieferknochen des Patienten auftreten können, also einem Knochen, der durch systemische und/oder lokale Einflüsse geschädigt ist.

 
  • Literatur

  • 1 Chen L, Arbieva ZH, Guo S. et al. Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 2010; 11: 471
  • 2 Anyanechi CE, Saheeb BD, Bassey GO. Spontaneous bone regeneration after segmental mandibular resection: a retrospective study of 13 cases. Int J Oral Maxillofac Surg 2016; 45: 1268-1272
  • 3 Filipowska J, Tomaszewski KA, Niedźwiedzki L. et al. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017; 20: 291-302
  • 4 Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 2017; 91: 30-38
  • 5 Siddiqui JA, Partridge NC. Physiological bone remodeling: Systemic regulation and growth factor involvement. Physiology 2016; 31: 233-245
  • 6 Riddle RC, Khatri R, Schipani E. et al. Role of hypoxia-inducible factor-1α in angiogenic-osteogenic coupling. J Mol Med 2009; 87: 583-590
  • 7 Götz W, Reichert C, Canullo L. et al. Coupling of osteogenesis and angiogenesis in bone substitute healing – A brief overview. Ann Anat 2012; 194: 171-173
  • 8 Grosso A, Burger MG, Lunger A. et al. It takes two to tango: Coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioengin Biotechnol 2017; 5: Article68
  • 9 Saran U, Piperni SG, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys 2014; 561: 109-117
  • 10 Trindade R, Albrektsson T, Wennerberg A. Current concepts for the biological basis of dental implants: foreign body equilibrium and osseointegration dynamics. Oral Maxillofac Surg Clin North Am 2015; 27: 175-183
  • 11 An SY, Lee YJ, Neupane S. et al. Effects of vascular formation during alveolar bone process morphogenesis in mice. Histochem Cell Biol 2017; 148: 435-443
  • 12 Dietrich EM, Antoniades K. Bone-vasculature interactions in the mandible: Is bone an angiogenic tissue?. Med Hypotheses 2012; 79: 582-584
  • 13 Von Arx T, Lozanoff S. Clinical Oral Anatomy. A Comprehensive Review for Dental Practitioners and Researchers. Heidelberg: Springer; 2017
  • 14 Gharb BB, Rampazzo A, Kutz JE. et al. Vascularization of the facial bones by the facial artery: Implications for full face allotransplantation. Plast Reconstr Surg 2014; 133: 1153-1165
  • 15 Castelli W. Vascular architecture of the human adult mandible. J Dent Res 1963; 42: 786-792
  • 16 Kleinheinz J, Büchter A, Kruse-Löfler B. et al. Incision design in implant dentistry based on vascularization of the mucosa. Clin Oral Impl Res 2005; 16: 518-523
  • 17 Kleinheinz J. Schnittführung in der Implantologie. Wissen kompakt 2014; 8: 3-11
  • 18 Law C, Alam P, Borumandi F. Floor-of-mouth hematoma following dental implant placement: Literature review and case presentation. J Oral Maxillofac Surg 2017; 75: 2340-2346
  • 19 Dempster WT, Enlow DH. Patterns of vascular channels in the cortex of the human mandible. Anat Rec 1959; 135: 189-205
  • 20 Karl M, Krafft T. Knochenquantität und Knochenqualität unter implantologischen Aspekten. Zahnmedizin up2date 2015; 9: 35-52
  • 21 Stabley JN, Moningka NC, Behnke BJ. et al. Exercise training augments regional bone and marrow blood flow during exercise. Med Sci Sports Exerc 2014; 46: 2107-2112
  • 22 Stegen S, Carmeliet G. The skeletal vascular system – Breathing life into bone tissue. Bone 2017; 115: 50-58
  • 23 Tesauro M, Mauriello A, Rovella V. et al. Arterial aging: from endothelial dysfunction to vascular calcification. J Intern Med 2017; 281: 471-482
  • 24 Xu X, Wang B, Ren C. et al. Age-related impairment of vascular structure and functions. Aging Dis 2017; 8: 590-610
  • 25 Engeland CG, Bosch JA, Cacioppo JT. et al. Mucosal wound healing. The roles of age and sex. Arch Surg 2006; 141: 1193-1197
  • 26 Ethunandan M, Birch AA, Evans BT. et al. Doppler sonography for the assessment of central mandibular blood flow. Brit J Oral Maxillofac Surg 2000; 38: 294-298
  • 27 Eiseman B, Johnson LR, Coll JR. Ultrasound measurement of mandibular arterial blood supply: Techniques for defining ischemia in the pathogenesis of alveolar ridge atrophy and tooth loss in the elderly?. J Oral Maxillofac Surg 2005; 63: 28-35
  • 28 Baladi MG, Tucunduva Neto PRCM, Cortes ARG. et al. Ultrasound analysis of mental artery flow in elderly patients: a case-control study. Dentomaxillofac Radiol 2015; 44: 20150097
  • 29 Mancini JCMA, Taveira Garcia MR, Souza de Oliveira IR. et al. Analysis of the blood supply to the post-fracture endentulous mandible: study by colour Doppler sonography. Oral Maxillofac Surg 2016; 20: 417-424
  • 30 Semba I. A histometrical analysis of age changes in the human lingual artery. Arch Oral Biol 1989; 34: 483-489
  • 31 Semba I, Funakoshi K, Kitano M. Histomorphometric analysis of age changes in the human inferior alveolar artery. Arch Oral Biol 2001; 46: 13-21
  • 32 Heasman PA, Adamson J. An investigation of possible age-related changes in the inferior alveolar artery in Man. Brit J Oral Maxillofac Surg 1987; 25: 406-409
  • 33 Boström KI. Where do we stand on vascular calcification?. Vascul Pharmacol 2016; 84: 8-14
  • 34 Jackson AO, Regine MA, Subrata C. et al. Molecular mechanisms and genetic regulation in atherosclerosis. Int J Cardiol Heart Vasc 2018; 25: 36-44
  • 35 Togan B, Gander T, Lanzer M. et al. Incidence and frequency of nondental incidenal findings on cone-beam computed tomography. J Cranio-Maxillo-Fac Surg 2016; 44: 1373-1380
  • 36 Dos Santos Soares A, Wanzeler AMV, Oliveira Renda MD. et al. Cone-beam computed tomography findings in the early diagnosis of calcified atheromas. J Oral Maxillofac Surg 2017; 75: 143-148
  • 37 Rennenberg RJMW, Kessels AGH, Schurgers LJ. et al. Vascular calcifications as a merker of increased cardiovascular risk: A meta-analysis. Vasc Health Risk Manag 2009; 5: 185-197
  • 38 Ginzburg E, Evans WE, Smith W. Lingual infarction: A review of the literature. Ann Vasc Surg 1992; 6: 450-452
  • 39 Dreizen S, Levy BM, Stern MH. et al. Human lingual atherosclerosis. Arch Oral Biol 1974; 19: 813-817
  • 40 Paneni F, Diaz Cañestro C, Libby P. et al. The aging cardiovascular system. Understanding it at the cellular and clinical levels. J Am Coll Cardiol 2017; 69: 1952-1967
  • 41 Oikarinen V. The inferior alveolar artery. A study based on gross anatomy and ateriography, supplemented by observations on age changes. Proc Finn Dental Soc 1965; 61 (Suppl. 01) 1-131
  • 42 Bradley JC. A radiological investigation into the age changes of the inferior dental artery. Br J Oral Surg 1975; 13: 82-90
  • 43 McGregor AD, MacDonald DG. Age changes in the human inferior alveolar artery – A histological study. Brit J Oral Maxillofac Surg 1989; 27: 371-374
  • 44 Lell M, Tomandl BF, Anders K. et al. Computed tomography angiography versus digital subtraction angiography in vascular mapping for planning of microsurgical reconstruction of the mandible. Eur Radiol 2005; 15: 1514-1520
  • 45 Tanoue S, Kiyosue H, Mori H. et al. Maxillary artery: Functional and imaging anatomy for safe and effective transcatheter treatment. Radiographics 2013; 33: E209-E224
  • 46 Pogrel MA, Dodson T, Tom W. Arteriographic assessment of patency of the inferior alveolar artery and its relevance to alveolar atrophy. J Oral Maxillofac Surg 1987; 45: 767-799
  • 47 Barrett RA, Cheraskin E, Ringsdorf WM. Alveolar bone loss and capillaropathy. J Periodontol 1969; 40: 131-136
  • 48 MacDonald DS, Zhang L, Gu Y. Calcifications of the external carotid arteries and their branches. Dentomaxillofac Radiol 2012; 41: 615-618
  • 49 Staudt J, Breustedt A, Kunz G. et al. Untersuchungen über die arterielle Versorgung des Unterkiefers beim Menschen. Stomatol DDR 1971; 28: 529-537
  • 50 Kassoulis JD, Scheper M, Jham B. et al. Histopathologic findings in bone from edentulous alveolar ridges: A role in osteonecrosis of the jaws?. Bone 2010; 47: 127-130
  • 51 Müller N. Histopathologische Untersuchungen über die Reaktion des Alveolargewebes bei Belastung durch Oberkiefer-Totalprothesen. Quintessenz 1986; 10: 1737-1748
  • 52 Götz W. Biologische Besonderheiten der Kieferknochen. Kofaktoren für die erfolgreiche Implantologie?. Implantol J 2007; 11: 22-28
  • 53 Akintoye SO. The distinctive jaw and alveolar bone regeneration. Oral Dis 2018; 24: 49-51
  • 54 Jonasson G, Skoglund I, Rythén M. The rise and fall of the alveolar process: Dependency of teeth and metabolic aspects. Arch Oral Biol 2018; 96: 195-200
  • 55 Ma L, Zheng LW, Sham MH. et al. Uncoupled angiogenesis and osteogensis in nicotine-compromised bone healing. J Bone Mineral Res 2010; 25: 1305-1313
  • 56 Chranovic BR, Albrektsson T, Wennerberg A. Smoking and dental implants: A systematic review and meta-analysis. J Dent 2015; 43: 487-498
  • 57 Shanbhogue VV, Mitchell DM, Rosen CJ. et al. Type2 diabetes and the skeleton: new insights into sweet bones. Lancet Diabetes Endocrinol 2016; 4: 159-173
  • 58 Yahagi K, Kolodgie FD, Lutter C. et al. Pathlogy of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol 2017; 37: 191-204
  • 59 Hua Y, Bi R, Zhang Y. et al. Different bone sites-specific response to diabetes rat models: Bone density, histology and microarchitecture. PLoS One 2018; 13: e0205503
  • 60 Shanbhogue VV, Hansen S, Frost M. et al. Bone disease in diabetes: another manifestation of microvascular disease?. Lancet Diabetes Endocrinol 2017; 5: 827-838
  • 61 Keene jr. J. Arteriosclerotic changes within the diabetic oral vasculature. J Dent Res 1975; 54: 77-82
  • 62 Yasuda K, Uemura M, Suwa F. Morphological study of the palatal gingiva of the maxillary first molar in the typ 2 diabetes mellitus model rat. Okajimas Folia Anat Jpn 2011; 88: 65-74
  • 63 Dreizen S, Vogel JJ, Levy BM. The effect of experimentally induced atherosclerosis on the oral structures of the rabbit. Arch Oral Biol 1971; 16: 43-50
  • 64 Whirthlin MR, Greenberg LD, Hansen LS. et al. Experimental atherosclerosis: Effect on arteries and periodontium of the rabbit mandible. J Periodontol 1971; 42: 174-182
  • 65 Lassila V. Changes in the aorta, the lingual and mandibular arteries, and gingival arterioles in experimental arteriosclerosis. A histological and enzyme histochemical study on the rat. Proc Finn Dental Soc 1978; 74(Suppl. 1–3): 3-79
  • 66 Keuroghlian A, Barroso Barroso AD, Kirikian G. et al. The effects of hyperlipidemia in implant osseointegration. J Oral Implantol 2015; 41: e7-e11
  • 67 Sato T, Arai M, Goto S. et al. Effects of propanolol on bone metabolism in spontaneously hypertensive rats. J Pharmacol Exper Therap 2010; 334: 99-105
  • 68 Gealh WC, Silva Pereira CC, Luvizuto ER. et al. Healing process of autogenous bone graft in spontaneously hypertensive rats treated with losartan: An immunohistochemical and histomorphometric study. J Oral Maxillofac Surg 2014; 72: 2569-2581
  • 69 Stahl SS, Witkin GJ, Scopp IW. Degenerative vascular changes observed in selected gingival specimens. Oral Surg Oral Med Oral Pathol 1962; 15: 1495-1503
  • 70 Sadr K, Aghbali A, Sadr M. et al. Effect of beta-blockers on number of osteoblasts and osteoclasts in alveolar socket following tooth extraction in Wistar rats. J Dent Shiraz Univ Med Sci 2017; 18: 37-43
  • 71 Wu X, Al-Abedella K, Eimar H. et al. Antihypertensive medications and the survival rate of osseointegrated dental implants: A cohort study. Clin Implant Dent Rel Res 2016; 18: 1171-1182
  • 72 Zandi M, Dehghan A, Janbaz P. et al. The starting point for bisphosphonate-related osteonecrosis of the jaw: Alveolar bone or oral mucosa? A randomized, controlled experimental study. J Craniomaxillofac Surg 2017; 45: 157-161
  • 73 Chang J, Hakam AE, McCauley LK. Current understanding of the pathophysiology of osteonecrosis of the jaw. Curr Osteopor Rep 2018; 16: 584-595
  • 74 Antonuzzo L, Lunghi A, Petreni P. et al. Osteonecrosis of the jaw and angiogenesis inhibitors: A revival of a rare but serious side effects. Curr Med Chem 2017; 24: 3068-3076
  • 75 Fusco V, Porta C, Saia G. et al. Osteonecrosis of the jaw in patients with metastatic renal cell cancer treated with bisohosphanets and targeted agents: Results of an Italian multicenter study and review of the literature. Clin Genioturin Cancer 2016; 13: 287-294
  • 76 Pimolbutr K, Porter S, Fedele S. Osteonecrosis of the jaw associated with antiangiogenics in antiresorptive-naïve patient: A comprehensive review of the literature. Biomed Res Int 2018; ID8071579