Exp Clin Endocrinol Diabetes 2019; 127(S 01): S73-S92
DOI: 10.1055/a-1018-9106
German Diabetes Association: Clinical Practice Guidelines
© Georg Thieme Verlag KG Stuttgart · New York

Therapy of Type 2 Diabetes

Rüdiger Landgraf
1   German Diabetes Foundationg, Munich, Germany
,
Jens Aberle
2   Section Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
,
Andreas L. Birkenfeld
3   University Hospital Carl Gustav Carus at the TU Dresden, Department of Metabolic Vascular Medicine, Dresden and German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany
4   Medical Clinic IV, University Hospital Tübingen, Germany
,
Baptist Gallwitz
4   Medical Clinic IV, University Hospital Tübingen, Germany
,
Monika Kellerer
5   Centre for Internal Medicine I, Marienhospital, Stuttgart, Germany
,
Harald Klein
6   Medical Clinic I, Berufsgenossenschaftliches University Hospital Bergmannsheil, Bochum, Germany
,
Dirk Müller-Wieland
7   Medical Clinic I, University Hospital, Aachen, Germany
,
Michael A. Nauck
8   Diabetes Center Bochum-Hattingen, St.-Josef-Hospital, Ruhr-University, Bochum, Germany
,
Hans-Martin Reuter
9   Diabetological Practice, Jena, Germany
,
Erhard Siegel
10   Department of Internal Medicine - Gastroenterology, Diabetology/Endocrinology and Nutritional Medicine, St. Josefkrankenhaus Heidelberg GmbH, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
20 December 2019 (online)

The practical recommendations of the German Diabetes Society/Deutsche Diabetes Gesellschaft (DDG) together with the German Society for Internal Medicine/Deutschen Gesellschaft für Innere Medizin (DGIM) are based on the contents of the National Treatment Guideline (Nationale Versorgungsleitlinie NVL) “Therapy of Type 2 Diabetes” [1]. The modifications in therapy and their justifications made in the present DDG practical recommendations were updated on the basis of new randomized controlled trials (RCTs) and meta-analyses and were consented by the DDG and the DGIM.

 
  • References

  • 1 Nationale Versorgungsleitlinien www.versorgungsleitlinien.de
  • 2 KGMM Alberti, Eckel RH, Grundy SM. et al. Harmonizing the metabolic syndrome. Circulation 2009; 120: 1640-1645
  • 3 Heinemann L, Kaiser P, Freckmann G. et al. HbA1c-Messung in Deutschland: Ist die Qualität ausreichend für Verlaufskontrolle und Diagnose?. Diabetologie 2018; 13: 46-53
  • 4 Petersmann A, Müller-Wieland D, Müller UA. et al. Definition, Klassifikation und Diagnostik des Diabetes mellitus. Diabetolgie 2019; 14 (Suppl. 02) S111-S117
  • 5 Landgraf R, Nauck M, Freckmann G. et al. Fallstricke bei der Diabetesdiagnostik: Wird zu lax mit Laborwerten umgegangen?. Dtsch Med Wochenschr 2018; 143: 1549-1555
  • 6 Nationale VersorgungsLeitlinie (NVL) Diabetes – Strukturierte Schulungsprogramme. 2018; www.leitlinien.de/nvl/diabetes/ schulungsprogramme
  • 7 Wang R, Song Y, Yan Y. et al. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis 2016; 254: 193-199
  • 8 Praxisempfehlungen DDG zu Lipidtherapie. Diabetologie. 2019;
  • 9 The Task Force for the management of arterial hypertension of the European Society of cardiology (ESC) and the European Society of Hypertension (ESH). 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021-3104
  • 10 Forouhi NG, Misra A, Mohan V. et al. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 2018; 361: k2234
  • 11 Serra-Majem L, Román-Viñas B, Sanchez-Villegas A. et al. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol Aspects Med 2019; 67: 1-55
  • 12 Taylor R, Al-Mrabeh A, Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol 2019; doi: S2213- 8587 30076-2
  • 13 Evert AB, Dennison M, Gardner CD. et al. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019; 42: 731-754
  • 14 Kempf K, Altpeter B, Berger J. et al. Efficacy of the telemedical lifestyle intervention program TeLiPro in advanced stages of type 2 diabetes: A randomized controlled trial. Diabetes Care 2017; 40: 863-871
  • 15 Lean MEJ, Leslie WS, Barnes AC. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster- randomised trial. Lancet 2018; 391: 541-551
  • 16 Adipositas – Prävention und Therapie. AWMF Register Nr 050-001
  • 17 Lawall H, Huppert P, Rümenapf G. et al. Periphere arterielle Verschluss krankheit (PAVK), Diagnostik, Therapie und Nachsorge. AWMF Register Nr 065-003 2015;
  • 18 Nationale VersorgungsLeitlinie Neuropathie bei Diabetes im Erwachse- nenalter. 2016; www.leitlinien.de/mdb/downloads/nvl/diabetes- mellitus/dm-neuropathie
  • 19 Nationale VersorgungsLeitlinie Prävention und Therapie von Netz- hautkomplikationen bei Diabetes. 2016; www.leitlinien.de/nvl/html/ netz.hautkomplikationen
  • 20 Nationale VersorgungsLeitlinie (NVL) Typ-2-Diabetes Präventionsund Behandlungsstrategien für Fußkomplikationen. 2018; www.leitlinien.de/ nvl/diabetes/fusskomplikationen
  • 21 Roeb E, Steffen HM, Bantel H. et al. S2k Leitlinie: Nicht-alkoholische Fettlebererkrankungen. AWMF Register Nr 021-025 2015;
  • 22 Nationale VersorgungsLeitlinie Nierenerkrankungen bei Diabetes im Erwachsenenalter 2018; www.leitlinien.de/nvl/diabetes/nierenerkrankungen
  • 23 Nationale VersorgungsLeitlinie Chronische Herzinsuffizienz. 2018 https://www.leitlinien.de/nvl/html/nvl-chronische-herzinsuffizienz
  • 24 Nationale Versorgungs-Leitlinie Chronische Koronare Herzerkrankung (KHK). 2016; https://www.leitlinien.de/mdb/downloads/nvl/khk/, www.leitlinien.de/nvl/html/nvl-chronische-khk
  • 25 Piercy KL, Richard P, Troiano RP. et al. The physical activity guidelines for Americans. JAMA 2018; 320: 2020-2028
  • 26 The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145-154
  • 27 Unick JL, Gaussoin SA, Hill JO. et al. Objectively assessed physical activity and weight loss maintenance among individuals enrolled in a lifestyle intervention. Obesity (Silver Spring) 2017; 25: 1903-1909
  • 28 The Look AHEAD Research Group. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: A post-hoc analysis of the Look AHEAD randomized clinical trial. Lancet Diabetes Endocrinol 2016; 4: 913-921
  • 29 Gregg EW, Lin J, Bardenheier B. et al. Impact of intensive lifestyle inter vention on disability-free life expectancy: The LookAHEAD Study. Diabetes Care 2018; 41: 1040-1048
  • 30 Yang D, Yang Y, Li Y. et al. Physical exercise as therapy for type 2 diabetes mellitus: From mechanism to orientation. Ann Nutr Metab 2019; 74: 313-321
  • 31 Tarp J, Støle AP, Blond K. et al. Cardiorespiratory fitness, muscular strength and risk of type 2 diabetes: A systematic review and meta- analysis. Diabetologia 2019; 62: 1129-1142
  • 32 Liu Y, Ye W, Chen Q. et al. Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: A systematic review and meta-analysis. Int J Environ Res Public Health 2019; 16: E140
  • 33 Pan A, Yeli Wang Y, Talaei M. et al. Relation of active, passive, and quit ting smoking with incident diabetes: A meta-analysis and systematic review. Lancet Diabetes Endocrinol 2015; 3: 958-996
  • 34 www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/ RV_STP/m-r/metformin.html
  • 35 Lazarus B, Wu A, Shin JI. et al. Association of metformin use with risk of lactic acidosis across the range of kidney function. A community-based cohort tudy. JAMA Intern Med 2018; 178: 903-910
  • 36 Griffin SJ, Leaver JK, Irving GJ. et al. Impact of metformin on cardiovascu- lar disease: A meta-analysis of randomised trails among people with type 2 diabetes. Diabetologia 2017; 60: 1620-1629
  • 37 Palmer SC, Mavridis D, Nicolucci A. et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes. A meta-analysis. JAMA 2016; 316: 313-324
  • 38 Madsen KS, Kähler P, Kähler LKA. et al. Metformin and second- or third- generation sulphonylurea combination therapy for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev 2019; 4 CD012368
  • 39 Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract 2018; 143: 409-419
  • 40 Thakur S, Daley B, Klubo-Gwiezdzinska J. The role of the antidiabetic drug metformin in the treatment of endocrine tumors. J Mol Endocrinol 2019, doi:JME-19-0083.R1
  • 41 De A, Kuppusamy G. Metformin in breast cancer: Preclinical and clinical evidence. Curr Probl Cancer 2019; DOI: S0147-0272(19)30047-9.
  • 42 Rahmani J, Manzari N, Thompson J. et al. The effect of metformin on biomarkers associated with breast cancer outcomes: A systematic review, meta-analysis, and dose-response of randomized clinical trials. Clin Transl Oncol 2019; DOI: 10.1007/s12094-019-02108-9.
  • 43 Fong W. To KKW Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2019; DOI: 10.1007/ s00018-019-03134-0.
  • 44 Feng Z, Zhou X, Liu N. et al. Metformin use and prostate cancer risk: A meta-analysis of cohort studies. Medicine (Baltimore) 2019; 98: e14955
  • 45 Marx N, Rosenstock J, Kahn SE. et al. Design and baseline characteristics of the CARdiovascular Outcome Trial of LINAgliptin Versus Glimepiride in Type 2 Diabetes (CAROLINA®). Diab Vasc Dis Res 2015; 12: 164-174
  • 46 Rosenstock J, Kahn SE, Johansen OE. et al. for the CAROLINA Investigators. Effect of Linagliptin vs Glimepiride on Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes: The CAROLINA Randomized Clinical Trial. JAMA 2019 Sep 19 DOI: 10.1001/jama.2019.13772.
  • 47 Rados DV, Pinto LC, Remonti LR. et al. The association between sulfony lurea use and all-cause and cardiovascular mortality: A meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Med 2016; 13: e1002091
  • 48 Azoulay L, Suissa S. Sulfonylureas and the risks of cardiovascular events and death: A methodological meta-regression analysis of the observa tional studies. Diabetes Care 2017; 40: 706-714
  • 49 Bain S, Druyts E, Balijepalli C. et al. Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycaemic drugs: A Bayesian meta-analysis of survival data. Diabetes Obes Metab 2017; 19: 329-335
  • 50 Zhuang XD, He X, Yang DY. et al. Comparative cardiovascular outcomes in the era of novel anti-diabetic agents: A comprehensive network meta-analysis of 166371 participants from 170 randomized controlled trials. Cardiovasc Diabetol 2018; 17: 79
  • 51 Powell WR, Christiansen CL, Miller DR. Meta-analysis of sulfonylurea therapy on long-term risk of mortality and cardiovascular events compared to other oral glucose-lowering treatments. Diabetes Ther 2018; 9: 1431-1440
  • 52 Simpson SH, Lee J, Choi S. et al. Mortality risk among sulfonylureas: An- systematic review and network meta-analysis. Lancet Diabetes Endocri- nol 2015; 3: 43-5134
  • 53 Hemmingsen B, Schroll JB, Lund SS. et al. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database Syst Rev 2013; 4: CD009008
  • 54 Hemmingsen B, Schroll JB, Jorn Wetterslev J. et al. Sulfonylurea vs. metformin monotherapy in patients with type 2 diabetes: A Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ Open 2014; 2: E162-E175
  • 55 Chen K, Kang D, Yu M. et al. Direct head-to-head comparison of glycae- mic durability of dipeptidyl peptidase-4 inhibitors and sulphonylureas in patients with type 2 diabetes mellitus: A meta-analysis of long-term randomized controlled trials. Diabetes Obes Metab 2018; 20: 1029-1033
  • 56 Scirica BM, Bhatt DL, Braunwald E. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369: 1317-1326
  • 57 White WB, Cannon CP, Heller SR. EXAMINE Investigators et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369: 1327-1335
  • 58 Green JB, Bethel MA, Armstrong PW. et al. TECOS Study Group. N Engl J Med 2015; 373: 232-242
  • 59 Rosenstock J, Perkovic V, Johansen OE. CARMELINA Investigators et al. Effect of linagliptin vs. placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA Randomized Clinical Trial. JAMA 2019; 321: 69-79
  • 60 Monami M, Ahrén B, Dicembrini I. et al. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: A meta-analysis of randomized clinical trials. Diabetes Obes Metab 2013; 15: 112-120
  • 61 Xu S, Zhang X, Tang L. et al. Cardiovascular effects of dipeptidylpeptidase-4 inhibitor in diabetic patients with and without established cardio- vascular disease: A meta-analysis and systematic review. Postgrad Med 2017; 129: 205-215
  • 62 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. A systematic review and meta-analysis. JAMA 2018; 319: 1580-1591
  • 63 Ling J, Cheng P, Ge L. et al. The efficacy and safety of dipeptidyl peptidase-4 inhibitors for type 2 diabetes: A Bayesian network meta-analysis of 58 randomized controlled trials. Acta Diabetologica 2019; 56: 249-272
  • 64 Li L, Li S, Deng K. et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: Systematic review and meta-analysis of randomized and observational studies. BMJ 2016; 352: i610
  • 65 Guo WQ, Li L, Su Q. et al. Effect of dipeptidylpeptidase-4 inhibitors on heart failure: A network meta-analysis. Value Health 2017; 20: 1427-1430
  • 66 Nauck MA, Meier JJ, Cavender MA. et al. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. circulation 2017; 136: 849-870
  • 67 Tkáč I, Raz I. Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes. Diabetes Care 2017; 40: 284-286
  • 68 Abrahami D, Douros A, Yin H. et al. Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: Population based cohort study. BMJ 2018; 360: k872
  • 69 Li G, Crowley MJ, Tang H. et al. Dipeptidyl peptidase 4 inhibitors and risk of inflammatory bowel disease among patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetes Care 2019; 42: e119-e121
  • 70 Storgaard H, Gluud LL, Bennett C. et al. Benefits and harms of sodium- glucose co-transporter 2 inhibitors in patients with type 2 diabetes: A systematic review and meta-analysis. PLoS One 2016; 11: e0166125
  • 71 Monami M, Liistro F, Scatena A. et al. Short and medium-term efficacy of sodium glucose co-transporter-2 (SGLT-2) inhibitors: A meta-analysis of randomized clinical trials. Diabetes Obes Metab 2018; 20: 1213-1222
  • 72 Usman MS, Siddiqi TJ, Memon MM. et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol 2018; 25: 495-502
  • 73 Mishriky BM, Tanenberg RJ, Sewell KA. et al. Comparing SGLT-2 inhibitors to DPP-4 inhibitors as an add-on therapy to metformin in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab 2018; 44: 112-120
  • 74 Seidu S, Kunutsor SK, Cos X. on behalf of primary care diabetes Europe et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis. Prim Care. Diabetes 2018; 12: 265-283
  • 75 Rådholm K, Wu JH, Wong MG. et al. Effects of sodium-glucose cotrans-porter-2 inhibitors on cardiovascular disease, death and safety outcomes in type 2 diabetes – A systematic review. Diabetes Res Clin Pract 2018; 140: 118-128
  • 76 Sinha B, Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract 2019; 150: 8-16
  • 77 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: A systematic review and Meta-analysis. JAMA 2018; 319: 1580-1591
  • 78 Puckrin R, Saltiel MP, Reynier P. et al. SGLT-2 inhibitors and the risk of infections: A systematic review and meta-analysis of randomized con trolled trials. Acta Diabetol 2018; 55: 503-514
  • 79 Lega IC, Bronskill SE, Campitelli MA. et al. Sodium glucose cotransporter 2 inhibitors and risk of genital mycotic and urinary tract infection: A population-based study of older women and men with diabetes. Diabetes Obes Metab 2019; DOI: 10.1111/dom.13820.. [Epub ahead of print]
  • 80 Aronson R, Frias J, Goldman A. et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab 2018; 20: 1453-1460
  • 81 Pratley RE, Eldor R, Raji A. et al. Ertugliflozin plus sitagliptin vs. either individual agent over 52 weeks in patients with type 2 diabetes mellitus inadequately controlled with metformin: The VERTIS FACTORIAL randomized trial. Diabetes Obes Metab 2018; 20: 1111-1120
  • 82 Fralick M, Schneeweiss S, Patorno E. Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N Engl J Med 2017; 376: 2300-2303
  • 83 Monami M, Nreu B, Zannoni S. et al. Effects of SGLT2 inhibitors on diabetic ketoacidosis: A meta-analysis of randomised controlled trials. Diabetes Res Clin Pract 2017; 130: 53-60
  • 84 Fadini GP, Bonora BM, Avogaro A. SGLT2 inhibitors and diabetic ketoacidosis: Data from the FDA Adverse Event Reporting System. Diabetologia 2017; 60: 1385-1389
  • 85 Donnan K, Segar L. SGLT2 inhibitors and metformin: Dual antihyperglycemic therapy and the risk of metabolic acidosis in type 2 diabetes. Eur J Pharmacol 2019; 846: 23-29
  • 86 Zinman B, Wanner C, Lachin JM. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117-2128
  • 87 Wanner C, Inzucchi SE, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375: 323-334
  • 88 Cherney DZI, Zinman B, Inzucchi SE. et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: An exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2017; 5: 610-621
  • 89 Sattar N, McLaren J, Kristensen SL. et al. SGLT2 Inhibition and cardiovascular events: Why did EMPA-REG Outcomes surprise and what were the likely mechanisms?. Diabetologia 2016; 59: 1333-1339
  • 90 Ferrannini E, Mark M, Mayoux E. et al. CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis. Diabetes Care 2016; 39: 1108-1114
  • 91 https://www.gba.de/downloads/40-268-4342/2017-04-20_DMP- ARL_Aenderung-Anlage-1_DMP-Diabetes-mellitus_TrG.pdf
  • 92 Neal B, Perkovic V, Mahaffey KW. et al. CANVAS Program Collaborative Group canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377: 644-657
  • 93 Perkovic V, Jardine MJ, Neal N. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380: 2295-2306
  • 94 Wiviott SD, Raz I, Bonaca MP. DECLARE–TIMI 58 Investigators et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380: 347-357
  • 95 Mosenzon O, Wiviott SD, Cahn A. et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 2019; 7: 606-617
  • 96 Furtado RHM, Bonaca MP, Raz I. Dapagliflozin and cardiovascular out- comes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation 2019; 139: 2516-2527
  • 97 Kato ET, Silverman MG, Mosenzon O. et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 2019; 139: 2528-2536
  • 98 www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/ referrals/SGLT2_inhibitors_(previously_Canagliflozin)/human_referral_ prac_000059.jsp&mid=WC0b01ac05805c5
  • 99 Scheen AJ. Does lower limb amputation concern all SGLT2 inhibitors?. Nat Rev Endocrinol 2018; 14: 326-328
  • 100 Fioretto P, Del Prato S, Buse JB. et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (CKD Stage 3A): The DERIVE Study. Diabetes Obes Metab 2018; DOI: 10.1111/dom.13413.
  • 101 Inzucchi SE, Iliev H, Pfarr E. et al. Empagliflozin and assessment of lower limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care 2018; 41: e4-e5
  • 102 Zhou Z, Jardine M, Perkovic V et al. Canagliflozin and fracture risk in individuals with type 2 diabetes: Results from the CANVAS Program. Diabetologia 2019; published online Aug 11:
  • 103 Kohler S, Kaspers S, Salsali A et al. Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo- controlled trials and a head-to-head study versus glimepiride. Diabetes Care 2018; 41: 1809–1816
  • 104 Ruanpeng D, Ungprasert P, Sangtian J. et al. Sodium-glucose cotrans- porter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Metab Res Rev 2017; DOI: 10.1002/dmrr.2903.
  • 105 Tang HL, Li DD, Zhang JJ. et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab 2016; 18: 1199-1206
  • 106 Levin PA, Nguyen H, Wittbrodt ET. et al. Glucagon-like peptide-1 receptor agonists: A systematic review of comparative effectiveness research. Diabetes Metab Syndr Obes 2017; 10: 123-139
  • 107 Marso SP, Daniels GH, Brown-Frandsen K. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-322
  • 108 Verma S, Bhatt DL, Bain SC. et al. Effect of liraglutide on cardiovascular events in patients with type 2 diabetes mellitus and polyvascular disease. Circulation 2018; 137: 2179-2183
  • 109 Marso SP, Nauck MA, Monk Fries T. et al. Myocardial infarction subtypes in patients with type 2 diabetes mellitus and the effect of liraglutide therapy (from the LEADER Trial). Am J Cardiol 2018; 121: 1467-1470
  • 110 Mann JFE, Ørsted DD, Buse JB. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 2017; 377: 839-848
  • 111 Kristensen SL, Rørth R, Jhund PS. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019; published Online August 14
  • 112 Liu J, Li L, Deng K. et al. Incretin based treatments and mortality in patients with type 2 diabetes: Systematic review and meta-analysis. BMJ 2017; 357: j2499
  • 113 Gerstein HC, Colhoun HM, Dagenais GR. for the REWIND Investigators et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019; 394: 121-130
  • 114 Gerstein HC, Colhoun HM, Dagenais GR. for the REWIND Investigators et al. Dulaglutide and renal outcomes in type 2 diabetes: An exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 2019; 394: 131-138
  • 115 Home PD, Ahrén B, Reusch JEB. et al. Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long- term efficacy with or without rescue therapy. Diabetes Res Clin Pract 2017; 131: 49-60
  • 116 Ahrén B, Carr MC, Murphy K. et al. Albiglutide for the treatment of type 2 diabetes mellitus: An integrated safety analysis of the HARMONY phase 3 trials. Diabetes Res Clin Pract 2017; 126: 230-239
  • 117 Hernandez AF, Green JB, Janmohamed S. et al. Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): A double-blind, randomised placebo-controlled trial. Lancet 2018; 392: 1519-1529
  • 118 Holman RR, Bethel MA, Mentz RJ. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377: 1228-1239
  • 119 Bethel MA, Patel RA, Merrill P. et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: A meta analysis. Lancet Diabetes Endocrinol 2018; 6: 105-113
  • 120 Marso SP, Bain SC, Consoli A. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375: 1834-1844
  • 121 Leiter LA, Bain SC, Hramiak I. et al. Cardiovascular risk reduction with once-weekly semaglutide in subjects with type 2 diabetes: A post hoc analysis of gender, age, and baseline CV risk profile in the SUSTAIN 6 trial. Cardiovasc Diabetol 2019; 18: 73
  • 122 Husain M, Birkenfeld AL, Donsmark M. PIONEER 6 Investigators et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2019, doi:10.1056
  • 123 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. A systematic review and metaanalysis. JAMA 2018; 319: 1580-1591
  • 124 Dicembrini I, Nreu B, Scatena A. et al. Microvascular effects of gluca- gon-like peptide-1 receptor agonists in type 2 diabetes: A meta-analysis of randomized controlled trials. Acta Diabetol 2017; 54: 933-941
  • 125 Vilsbøll T, Bain SC, Leiter LA. et al. Semaglutide, reduction in glycated haemoglobin and the risk of diabetic retinopathy. Diabetes Obes Metab 2018; 20: 889-897
  • 126 Monami M, Nreu B, Scatena A. et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab 2017; 19: 1233-1241
  • 127 Nauck MA, Meier JJ, Schmidt WE. Incretin-based glucose-lowering medications and the risk of acute pancreatitis and/or pancreatic cancer: Reassuring data from cardio-vascular outcome trials. Diabetes Obes Metab 2017; 19: 1327-1328
  • 128 Azoulay L, Filion KB, Platt RW. et al. Association between incretin-based drugs and the risk of acute pancreatitis. JAMA Intern Med 2016; 176: 1464-1473
  • 129 Wang T, Wang F, Gou Z. et al. Using real-world data to evaluate the association of incretin-based therapies with risk of acute pancreatitis: A meta-analysis of 1324515 patients from observational studies. Diabetes Obes Metabol 2015; 17: 32-41
  • 130 Russell-Jones D, Pouwer F, Khunti K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes Metab 2018; 20: 488-496
  • 131 Marso SP, McGuire DK, Zinman B. DEVOTE Study Group et al. Efficacy and safety of degludec vs. glargine in type 2 diabetes. New Engl J Med 2017; 377: 723-732
  • 132 Pieber TR, Marso SP, McGuire DK. et al. DEVOTE 3: Temporal relationships between severe hypoglycaemia, cardiovascular outcomes and- mortality. Diabetologia 2018; 61: 58-65
  • 133 Lau IT, Lee KF, So WY. et al. Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus. Diabetes Metab Syndr Obes 2017; 10: 273-284
  • 134 Ritzel R, Roussel R, Giaccari A. et al. Better glycaemic control and less hypoglycaemia with insulin glargine 300 U/mL vs. glargine 100 U/mL: 1-year patient-level meta-analysis of the EDITION clinical studies in people with type 2 diabetes. Diabetes Obes Metab 2018; 20: 541-548
  • 135 Bonadonna RC, Renard E, Cheng A. et al. Switching to insulin glargine 300 U/mL: Is duration of prior basal insulin therapy important?. Diabetes Res Clin Pract 2018; 142: 19-25
  • 136 Linnebjerg H, Lam EC, Seger ME. et al. Comparison of the pharmacoki- netics and pharmacodynamics of LY2963 016 insulin glargine and EU- and US-Approved versions of lantus insulin glargine in healthy subjects: Three randomized euglycemic clamp studies. Diabetes Care 2015; 38: 2226-2233
  • 137 Rosenstock J, Hollander P, Bhargava A. et al. Similar efficacy and safety of LY2963 016 insulin glargine and insulin glargine (Lantus®) in patients with type 2 diabetes who were insulin-naïve or previously treated with insulin glargine: A randomized, double-blind controlled trial (ELEMENT 2 study). Diabetes Obes Metabol 2015; 17: 734-741
  • 138 Yamada T, Kamata R, Ishinohachi K. et al. Biosimilar vs. originator insulins: Systematic review and meta-analysis. Diabetes Obes Metab 2018; 20: 1787-1792
  • 139 But A, De Bruin ML, Bazelier MT. et al. Cancer risk among insulin users: Comparing analogues with human insulin in the CARING five-country cohort study. Diabetologia 2017; 60: 1691-1703
  • 140 Maiorino MI, Chiodini P, Bellastella G. et al. Insulin and glucagon-like peptide1 receptor agonist combination therapy in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2017; 40: 614-624
  • 141 Guja C, Frías JP, Somogyi A. et al. Effect of exenatide QW or placebo, both added to titrated insulin glargine, in uncontrolled type 2 diabetes: The DURATION-7 randomized study. Diabetes Obes Metab 2018; 20: 1602-1161
  • 142 Rodbard HW, Lingvay I, Reed J. et al. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): A randomized, controlled trial. J Clin Endocrinol Metab 2018; 103: 2291-2301
  • 143 Gentile S, Fusco A, Colarusso S. et al. A randomized, open-label, com- parative, crossover trial on preference, efficacy, and safety profiles of lispro insulin U-100 versus concentrated lispro insulin U-200 in patients with type 2 diabetes mellitus: a possible contribution to greater treat- ment adherence. Expert Opin Drug Saf 2018; 17: 445-450
  • 144 Heise T, Hövelmann U, Brøndsted L. et al. Faster-acting insulin aspart: earlier onset of appearance and greater early pharmacokinetic and pharmacodynamic effects than insulin aspart. Diabetes Obes Metabol 2015; 17: 682-688
  • 145 Bowering K, Case C, Harvey J. et al. Faster aspart versus insulin aspart as part of a basal-bolus regimen in inadequately controlled type 2 diabetes: The onset 2 trial. Diabetes Care 2017; 40: 951-957
  • 146 The SPRINT Research Group A Randomized Trial of Intensive vs. Standard Blood-Pressure Control. N Engl J Med 2015; 373: 2103– 2116
  • 147 Düsing R. Therapieziele bei der Hypertoniebehandlung. Dtsch Med Wochenschr 2017; 142: 1420-1429
  • 148 Banegas JR, Ruilope LM, de la Sierra A. et al. Relationship between clinic and ambulatory blood-pressure measurements and mortality. N Engl J Med 2018; 378: 1509-1520
  • 149 Khunti K, Gomes MB, Pocock S. et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes Metab 2018; 20: 427-437
  • 150 Gough SC, Bode B, Woo V. et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26- week, treat-to-target trial in insulin-naive patients with type 2 diabetes. Lancet Diabet Endocrinol 2014; 2: 885-893
  • 151 Diamant M, Nauck MA, Shaginian R. et al. glucagon-like peptide 1 receptor agonist or bolus insulin with optimized basal insulin in type 2 diabetes. Diabetes Care 2014; 37: 2763-2773
  • 152 Ahmann A, Rodbard HW, Rosenstock J. et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: A randomized, placebocontrolled trial. Diabetes Obes Metab 2015; 17: 1056-1064
  • 153 Montvida O, Klein K, Kumar S. et al. Addition of or switch to insulin therapy in people treated with glucagon-like peptide-1 receptor agonists: A real-world study in 66 583 patients. Diabetes Obes Metab 2017; 19: 108-117
  • 154 Billings LK, Doshi A, Gouet D. et al. Efficacy and safety of ideglira versus basal-bolus insulin therapy in patients with type 2 diabetes uncontrolled on metformin and basal insulin: The DUAL VII Random- ized Clinical Trial. Diabetes Care 2018; 41: 1009-1016
  • 155 Catapano AL, Graham I, De Backer G. et al. 2016; ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J 2016; 37 (39) 2999-3058
  • 156 Parhofer KG, Birkenfeld AL, Krone W. et al. Positionspapier zur Lipid- therapie bei Patienten mit Diabetes mellitus. Diabetologie 2018; 13: S209-S213