Exp Clin Endocrinol Diabetes 2020; 128(06/07): 428-431
DOI: 10.1055/a-1014-2510

More Than Fever - Novel Concepts in the Regulation of Body Temperature by Thyroid Hormones

Jens Mittag
1   University of Lübeck, Center of Brain Behavior and Metabolism (CBBM), Lübeck, Germany
› Author Affiliations


Thyroid hormone is well known for its profound effects on body temperature. This minireview summarizes the recent discoveries on the underlying mechanisms, including the role of the hormone’s central actions in the control of brown adipose tissue thermogenesis, its effect on browning of white adipose tissue, the possible involvement of thyroid hormone transporters, and the potential contribution of its downstream metabolites such as 3-iodothyronamine.

Publication History

Received: 12 July 2019
Received: 05 September 2019

Accepted: 16 September 2019

Article published online:
25 October 2019

© Georg Thieme Verlag KG
Stuttgart · New York

  • References

  • 1 Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiological Reviews 2006; 86: 435-464
  • 2 Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological Reviews 2004; 84: 277-359
  • 3 Wikstrom L, Johansson C, Salto C. et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. The EMBO Journal 1998; 17: 455-461
  • 4 Yen PM. Physiological and molecular basis of thyroid hormone action. Physiological Reviews 2001; 81: 1097-1142
  • 5 Mittag J. Peripheral Regulation of Energy Metabolism by Thyroid Hormone. Hot Thyroidology 2009; HT02/09
  • 6 Bianco AC, McAninch EA. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. The Lancet Diabetes & Endocrinology 2013; 1: 250-258 DOI: 10.1016/S2213-8587(13)70069-X.
  • 7 Hoefig CS, Harder L, Oelkrug R. et al. Thermoregulatory and cardiovascular consequences of a transient thyrotoxicosis and recovery in male mice. Endocrinology 2016; 157: 2957-2967 DOI: 10.1210/en.2016-1095.
  • 8 Johann K, Cremer AL, Fischer AW. et al. Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption. Cell Reports 2019; 27: 3385-3400 e3383 DOI: 10.1016/j.celrep.2019.05.054.
  • 9 Warner A, Rahman A, Solsjö P. et al. Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor alpha 1. Proceedings of the National Academy of Sciences of the United States of America 2013; 110: 16241-16246
  • 10 Lopez M, Varela L, Vazquez MJ. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine 2010; 16: 1001-1008
  • 11 Martinez-Sanchez N, Seoane-Collazo P, Contreras C. et al. Hypothalamic AMPK-ER Stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metabolism 2017; 26: 212-229 e212 DOI: 10.1016/j.cmet.2017.06.014.
  • 12 Weiner J, Hankir M, Heiker JT. et al. Thyroid hormones and browning of adipose tissue. Molecular and Cellular Endocrinology 2017; 458: 156-159 DOI: 10.1016/j.mce.2017.01.011.
  • 13 Martinez-Sanchez N, Moreno-Navarrete JM, Contreras C. et al. Thyroid hormones induce browning of white fat. The Journal of Endocrinology 2017; 232: 351-362 DOI: 10.1530/JOE-16-0425.
  • 14 Warner A, Mittag J. Breaking BAT: can browning create a better white?. The Journal of Endocrinology 2016; 228: R19-R29 DOI: 10.1530/JOE-15-0408.
  • 15 Lin JZ, Martagon AJ, Cimini SL. et al. Pharmacological activation of thyroid hormone receptors elicits a functional conversion of white to brown fat. Cell Reports 2015; 13: 1528-1537 DOI: 10.1016/j.celrep.2015.10.022.
  • 16 Dittner C, Lindsund E, Cannon B. et al. At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1. Molecular Metabolism 2019; 25: 20-34 DOI: 10.1016/j.molmet.2019.05.005.
  • 17 Little AG, Seebacher F. The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates. The Journal of Experimental Biology 2014; 217: 1642-1648 DOI: 10.1242/jeb.088880.
  • 18 Gavrila A, Hasselgren PO, Glasgow A. et al. Variable cold-induced brown adipose tissue response to thyroid hormone status. Thyroid 2017; 27: 1-10 DOI: 10.1089/thy.2015.0646.
  • 19 Klieverik LP, Coomans CP, Endert E. et al. Thyroid hormone effects on whole-body energy homeostasis and tissue-specific fatty acid uptake in vivo. Endocrinology 2009; 150: 5639-5648 DOI: 10.1210/en.2009-0297.
  • 20 Friesema EC, Jansen J, Milici C. et al. Thyroid hormone transporters. Vitamins and Hormones 2005; 70: 137-167
  • 21 de Jesus LA, Carvalho SD, Ribeiro MO. et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. The Journal of Clinical Investigation 2001; 108: 1379-1385
  • 22 Schwartz CE, Stevenson RE. The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome. Best Practice & Research Clinical Endocrinology & Metabolism 2007; 21: 307-321 DOI: 10.1016/j.beem.2007.03.009.
  • 23 Di Cosmo C, Liao XH, Ye H. et al. Mct8-deficient mice have increased energy expenditure and reduced fat mass that is abrogated by normalization of serum T3 levels. Endocrinology 2013; 154: 4885-4895 DOI: 10.1210/en.2013-1150.
  • 24 Mayerl S, Muller J, Bauer R. et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. The Journal of Clinical Investigation 2014; 124: 1987-1999 DOI: 10.1172/JCI70324.
  • 25 Trajkovic M, Visser TJ, Mittag J. et al. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. The Journal of Clinical Investigation 2007; 117: 627-635
  • 26 Stromme P, Groeneweg S, Lima de Souza EC. et al. Mutated thyroid hormone transporter OATP1C1 associates with severe brain hypometabolism and juvenile neurodegeneration. Thyroid 2018; 28: 1406-1415 DOI: 10.1089/thy.2018.0595.
  • 27 Mayerl S, Schmidt M, Doycheva D. et al. Thyroid hormone transporters MCT8 and OATP1C1 control skeletal muscle regeneration. Stem Cell Reports 2018; 10: 1959-1974 DOI: 10.1016/j.stemcr.2018.03.021.
  • 28 Hoefig CS, Kohrle J, Brabant G. et al. Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. The Journal of Clinical Endocrinology and Metabolism 2011; 96: 1864-1872 DOI: 10.1210/jc.2010-2680.
  • 29 Kohrle J. The colorful diversity of thyroid hormone metabolites. European Thyroid Journal 2019; 8: 115-129 DOI: 10.1159/000497141.
  • 30 Scanlan TS, Suchland KL, Hart ME. et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nature Medicine 2004; 10: 638-642
  • 31 Gachkar S, Oelkrug R, Martinez-Sanchez N. et al. 3-Iodothyronamine induces tail vasodilation through central action in male mice. Endocrinology 2017; 158: 1977-1984 DOI: 10.1210/en.2016-1951.
  • 32 Braunig J, Mergler S, Jyrch S. et al. 3-Iodothyronamine activates a set of membrane proteins in murine hypothalamic cell lines. Frontiers in Endocrinology 2018; 9: 523 DOI: 10.3389/fendo.2018.00523.
  • 33 Harder L, Schanze N, Sarsenbayeva A. et al. In vivo effects of repeated thyronamine administration in male C57BL/6J mice. European Thyroid Journal 2018; 7: 3-12 DOI: 10.1159/000481856.
  • 34 Hoefig CS, Jacobi SF, Warner A. et al. 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. British Journal of Pharmacology 2015; 172: 3426-3433 DOI: 10.1111/bph.13131.
  • 35 Magnus-Levy A. Uber den respiratorischen Gaswechsel unter dem Einfluss der Thyroidea sowie unter verschiedenen pathologischen Zustanden. Berlin Klin Wochenschr 1895; 34: 650-652