Nervenheilkunde 2019; 38(12): 911-928
DOI: 10.1055/a-1013-7993
Schwerpunkt
© Georg Thieme Verlag KG Stuttgart · New York

Bildgebung bei Epilepsie

Was sollte man für den Alltag wissen und welche Entwicklungen gibt es?Imaging in epilepsy
Justus Marquetand
1   Abteilung für Neurologie mit Schwerpunkt Epileptologie, Hertie-Institut für Klinische Hirnforschung, Universität Tübingen
,
Benjamin Bender
3   Klinik für diagnostische und interventionelle Neuroradiologie, Universität Tübingen
,
Niels K Focke
1   Abteilung für Neurologie mit Schwerpunkt Epileptologie, Hertie-Institut für Klinische Hirnforschung, Universität Tübingen
2   Klinik für klinische Neurophysiologie, Georg-August Universität Göttingen
› Author Affiliations
Further Information

Publication History

Publication Date:
17 December 2019 (online)

ZUSAMMENFASSUNG

In der Diagnostik der Epilepsien sind bildgebende Verfahren ein wesentlicher Bestandteil. Neben bildgebender Notfalldiagnostik und verschiedener MRT-Protokolle nach erstmaligem epileptischem Anfall werden häufige epileptogene Läsionen und deren bildgebende Charakteristika dargestellt. Darüber hinaus werden bildgebende Verfahren (VBM, DTI, Quellenlokalisation, nuklearmedizinische Verfahren, etc.) erläutert und deren Nutzen in der prächirurgischen Epilepsiediagnostik aufgezeigt.

In diesem Übersichtsartikel wollen wir einen Überblick über das wachsende Feld der bildgebenden Verfahren bei Epilepsie und klinisch relevante neue Entwicklungen geben.

ABSTRACT

Imaging in epilepsy is an important part of diagnostics. Next to imaging diagnostics in emergency, we describe different MRI protocols after the first epileptic seizure, common epileptogenic lesions and their imaging characteristics. In addition, imaging techniques (VBM, DTI, source localization, nuclear medicine procedures, etc.) are explained and their benefits regarding presurgical epilepsy diagnostics are briefly demonstrated.

In this review, we want to give an overview of the growing field of imaging in epilepsy and emerging clinically relevant developments.

 
  • Literatur

  • 1 Duncan JS, Winston GP, Koepp MJ. et al Brain imaging in the assessment for epilepsy surgery. Lancet Neurol 2016; 15: 420-433
  • 2 Miserocchi A, Cascardo B, Piroddi C. et al Surgery for temporal lobe epilepsy in children: relevance of presurgical evaluation and analysis of outcome. J Neurosurg Pediatr 2013; 11: 256-267
  • 3 Elger C.E. BRgEeaI. S1-Leitlinie Erster epileptischer Anfall und Epilepsien im Erwachsenenalter. Deutsche Gesellschaft für Neurologie (Hrsg.) Leitlinien für Diagnostik und Therapie in der Neurologie Berlin 2017
  • 4 King MA, Newton MR, Jackson GD. et al Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet 1998; 352: 1007-1011
  • 5 Von Oertzen J, Urbach H, Jungbluth S. et al Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry 2002; 73: 643-647
  • 6 Semah F, Picot MC, Adam C. et al Is the underlying cause of epilepsy a major prognostic factor for recurrence?. Neurology 1998; 51: 1256-1262
  • 7 Wellmer J, Quesada CM, Rothe L. et al Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 2013; 54: 1977-1987
  • 8 Bernasconi A, Cendes F, Theodore WH. et al Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia 2019; 60: 1054-1068
  • 9 Knake S, Triantafyllou C, Wald LL. et al 3 T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 2005; 65: 1026-1031
  • 10 Kotikalapudi R, Martin P, Marquetand J. et al Systematic Assessment of Multispectral Voxel-Based Morphometry in Previously MRI-Negative Focal Epilepsy. AJNR Am J Neuroradiol 2018; 39: 2014-2021
  • 11 Radbruch A, Richter H, Fingerhut S. et al Gadolinium Deposition in the Brain in a Large Animal Model: Comparison of Linear and Macrocyclic Gadolinium-Based Contrast Agents. Invest Radiol 2019, ePub
  • 12 Agency EM. EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans. London: 2017
  • 13 Jallon P, Loiseau P, Loiseau J. Newly diagnosed unprovoked epileptic seizures: presentation at diagnosis in CAROLE study. Coordination Active du Reseau Observatoire Longitudinal de l’ Epilepsie. Epilepsia 2001; 42: 464-475
  • 14 Krumholz A, Wiebe S, Gronseth G. et al Practice Parameter: evaluating an apparent unprovoked first seizure in adults (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2007; 69: 1996-2007
  • 15 Seneviratne U. Management of the first seizure: an evidence based approach. Postgrad Med J 2009; 85: 667-673
  • 16 Penfield W. Epileptogenic lesions. Acta Neurol Psychiatr Belg 1956; 56: 75-88
  • 17 Singh G, Prabhakar S, Modi M. Central nervous system infections and epilepsy. Epilepsia 2008; 49 (Suppl. 06) 1
  • 18 Hakami T, McIntosh A, Todaro M. et al MRI-identified pathology in adults with new-onset seizures. Neurology 2013; 81: 920-927
  • 19 Blumcke I, Spreafico R, Haaker G. et al Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. The New England journal of medicine 2017; 377: 1648-1656
  • 20 Malmgren K, Thom M. Hippocampal sclerosis – origins and imaging. Epilepsia 2012; 53 (Suppl. 04) 19-33
  • 21 Winston GP, Vos SB, Burdett JL. et al Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy. Epilepsia 2017; 58: 1645-1652
  • 22 Camacho DL, Castillo M. MR imaging of temporal lobe epilepsy. Semin Ultrasound CT MR 2007; 28: 424-436
  • 23 Winston GP, Cardoso MJ, Williams EJ. et al Automated hippocampal segmentation in patients with epilepsy: available free online. Epilepsia 2013; 54: 2166-2173
  • 24 Kreilkamp BAK, Weber B, Elkommos SB. et al Hippocampal subfield segmentation in temporal lobe epilepsy: Relation to outcomes. Acta Neurol Scand 2018; 137: 598-608
  • 25 Nolan MA, Sakuta R, Chuang N. et al Dysembryoplastic neuroepithelial tumors in childhood: long-term outcome and prognostic features. Neurology 2004; 62: 2270-2276
  • 26 Prayson RA, Estes ML, Morris HH. Coexistence of neoplasia and cortical dysplasia in patients presenting with seizures. Epilepsia 1993; 34: 609-615
  • 27 Brogna C, Gil Robles S, Duffau H. Brain tumors and epilepsy. Expert Rev Neurother 2008; 8: 941-955
  • 28 van Breemen MS, Wilms EB, Vecht CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 2007; 6: 421-430
  • 29 Adachi Y, Yagishita A. Gangliogliomas: Characteristic imaging findings and role in the temporal lobe epilepsy. Neuroradiology 2008; 50: 829-834
  • 30 Ruda R, Bello L, Duffau H. et al Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol 2012; 14 (Suppl. 04) iv55-64
  • 31 Lieu AS, Howng SL. Intracranial meningiomas and epilepsy: incidence, prognosis and influencing factors. Epilepsy research 2000; 38: 45-52
  • 32 Hochberg FH, Miller DC. Primary central nervous system lymphoma. J Neurosurg 1988; 68: 835-853
  • 33 Raz E, Kapilamoorthy TR, Gupta AK. et al Case 186: Dysembrioplastic neuroepithelial tumor. Radiology 2012; 265: 317-320
  • 34 Parmar HA, Hawkins C, Ozelame R. et al Fluid-attenuated inversion recovery ring sign as a marker of dysembryoplastic neuroepithelial tumors. J Comput Assist Tomogr 2007; 31: 348-353
  • 35 Fernandez C, Girard N, Paz Paredes A. et al The usefulness of MR imaging in the diagnosis of dysembryoplastic neuroepithelial tumor in children: a study of 14 cases. AJNR Am J Neuroradiol 2003; 24: 829-834
  • 36 Kwon JW, Kim IO, Cheon JE. et al Cerebellopontine angle ganglioglioma: MR findings. AJNR Am J Neuroradiol 2001; 22: 1377-1379
  • 37 Zhang D, Henning TD, Zou LG. et al Intracranial ganglioglioma: clinicopathological and MRI findings in 16 patients. Clin Radiol 2008; 63: 80-91
  • 38 Koeller KK, Henry JM. From the archives of the AFIP: superficial gliomas: radiologic-pathologic correlation. Armed Forces Institute of Pathology. Radiographics 2001; 21: 1533-1556
  • 39 Blumcke I, Thom M, Aronica E. et al The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011; 52: 158-174
  • 40 Fauser S, Schulze-Bonhage A, Honegger J. et al Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology. Brain 2004; 127: 2406-2418
  • 41 Kabat J, Krol P. Focal cortical dysplasia – review. Pol J Radiol 2012; 77: 35-43
  • 42 Taylor DC, Falconer MA, Bruton CJ. et al Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 1971; 34: 369-387
  • 43 Barkovich AJ, Kjos BO. Gray matter heterotopias: MR characteristics and correlation with developmental and neurologic manifestations. Radiology 1992; 182: 493-499
  • 44 Battaglia G, Chiapparini L, Franceschetti S. et al Periventricular nodular heterotopia: classification, epileptic history, and genesis of epileptic discharges. Epilepsia 2006; 47: 86-97
  • 45 Gonzalez G, Vedolin L, Barry B. et al Location of periventricular nodular heterotopia is related to the malformation phenotype on MRI. AJNR Am J Neuroradiol 2013; 34: 877-883
  • 46 Parrini E, Ramazzotti A, Dobyns WB. et al Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 2006; 129: 1892-1906
  • 47 Geibprasert S, Pongpech S, Jiarakongmun P. et al Radiologic assessment of brain arteriovenous malformations: what clinicians need to know. Radiographics 2010; 30: 483-501
  • 48 Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet 2013; 14: 355-369
  • 49 Josephson CB, Bhattacharya JJ, Counsell CE. et al Seizure risk with AVM treatment or conservative management: prospective, population-based study. Neurology 2012; 79: 500-507
  • 50 Awad I, Jabbour P. Cerebral cavernous malformations and epilepsy. Neurosurg Focus 2006; 21: e7
  • 51 Vogler R, Castillo M. Dural cavernous angioma: MR features. AJNR Am J Neuroradiol 1995; 16 (04) 773-775
  • 52 Graus F, Titulaer MJ, Balu R. et al A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; 15: 391-404
  • 53 Oyanguren B, Sanchez V, Gonzalez FJ. et al Limbic encephalitis: a clinical-radiological comparison between herpetic and autoimmune etiologies. Eur J Neurol 2013; 20: 1566-1570
  • 54 Kelley BP, Patel SC, Marin HL. et al Autoimmune Encephalitis: Pathophysiology and Imaging Review of an Overlooked Diagnosis. AJNR Am J Neuroradiol 2017; 38: 1070-1078
  • 55 Chow FC, Glaser CA, Sheriff H. et al Use of clinical and neuroimaging characteristics to distinguish temporal lobe herpes simplex encephalitis from its mimics. Clin Infect Dis 2015; 60: 1377-1383
  • 56 Bien CGaH. M. “Autoimmune Epilepsy”: Encephalitis With Autoantibodies for Epileptologists. Epilepsy Curr 2017: 134-141
  • 57 Barisano G, Sepehrband F, Ma S. et al Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol 2019; 92: 20180492
  • 58 Veersema TJ, Ferrier CH, van Eijsden P. et al Seven tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy. Epilepsia Open 2017; 2: 162-171
  • 59 Henry TR, Chupin M, Lehericy S. et al Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T(1). Radiology 2011; 261: 199-209
  • 60 Martin P, Bender B, Focke NK. Post-processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg 2015; 5: 188-203
  • 61 Besson P, Andermann F, Dubeau F. et al Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain 2008; 131: 3246-3255
  • 62 Huppertz HJ, Grimm C, Fauser S. et al Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3 D MRI analysis. Epilepsy research 2005; 67: 35-50
  • 63 Wang ZI, Jones SE, Jaisani Z. et al Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Annals of neurology 2015; 77: 1060-1075
  • 64 Martin P, Winston GP, Bartlett P. et al Voxel-based magnetic resonance image postprocessing in epilepsy. Epilepsia 2017; 58: 1653-1664
  • 65 Campos BM, Coan AC, Beltramini GC. et al White matter abnormalities associate with type and localization of focal epileptogenic lesions. Epilepsia 2015; 56: 125-132
  • 66 Rampp SF. M. Magnetoencephalography in epileptology – The bigger picture. Z Epileptol 2018; 31: 70
  • 67 Sperli F, Spinelli L, Seeck M. et al EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 2006; 47: 981-990
  • 68 Brodbeck V, Spinelli L, Lascano AM. et al Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI. Epilepsia 2010; 51: 583-591
  • 69 Iwasaki M, Pestana E, Burgess RC. et al Detection of epileptiform activity by human interpreters: blinded comparison between electroencephalography and magnetoencephalography. Epilepsia 2005; 46: 59-68
  • 70 Jung J, Bouet R, Delpuech C. et al The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy. Brain 2013; 136: 3176-3186
  • 71 Mouthaan BE, Rados M, Boon P. et al Diagnostic accuracy of interictal source imaging in presurgical epilepsy evaluation: A systematic review from the E-PILEPSY consortium. Clin Neurophysiol 2019 ePub
  • 72 Boto E, Meyer SS, Shah V. et al A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage 2017; 149: 404-414
  • 73 Theodore WH, Sato S, Kufta CV. et al FDG-positron emission tomography and invasive EEG: seizure focus detection and surgical outcome. Epilepsia 1997; 38: 81-86
  • 74 Kojan M, Dolezalova I, Koritakova E. et al Predictive value of preoperative statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy & behavior 2018; 79: 46-52
  • 75 Vinton AB, Carne R, Hicks RJ. et al The extent of resection of FDG-PET hypometabolism relates to outcome of temporal lobectomy. Brain 2007; 130: 548-560
  • 76 Ryvlin P, Bouvard S, Le Bars D. et al Clinical utility of flumazenil-PET versus [18 F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 1998; 121: 2067-2081
  • 77 Kim YK, Lee DS, Lee SK. et al (18) F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J Nucl Med 2002; 43: 1167-1174
  • 78 Tan YL, Kim H, Lee S. et al Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias. Neuroimage 2018; 166: 10-18
  • 79 Vivash L, Gregoire MC, Lau EW. et al 18F-flumazenil: a gamma-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 2013; 54: 1270-1277
  • 80 Rubi S, Costes N, Heckemann RA. et al Positron emission tomography with alpha-[11 C]methyl-L-tryptophan in tuberous sclerosis complex-related epilepsy. Epilepsia 2013; 54: 2143-2150
  • 81 Knowlton RC, Elgavish RA, Bartolucci A. et al Functional imaging: II. Prediction of epilepsy surgery outcome. Annals of neurology 2008; 64: 35-41
  • 82 von Oertzen TJ, Mormann F, Urbach H. et al Prospective use of subtraction ictal SPECT coregistered to MRI (SISCOM) in presurgical evaluation of epilepsy. Epilepsia 2011; 52: 2239-2248
  • 83 von Oertzen TJ. PET and ictal SPECT can be helpful for localizing epileptic foci. Curr Opin Neurol 2018; 31: 184-191
  • 84 Lascano AM, Perneger T, Vulliemoz S. et al Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin Neurophysiol 2016; 127: 150-155