Neuroradiologie Scan 2020; 10(02): 141-160
DOI: 10.1055/a-1005-8564
CME-Fortbildung

Leukodystrophien im Erwachsenenalter: Diagnostik Schritt für Schritt

Adult leukodystrophies: a step-by-step diagnostic approach
Lucas Lopes Resende
,
Anderson Rodrigues Brandão de Paiva
,
Fernando Kok
,
Claudia da Costa Leite
,
Leandro Tavares Lucato

Verantwortlicher Herausgeber dieser Rubrik: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Professor Dr. Michael Forsting, Essen.

Die klinische Manifestation von adulten Leukodystrophien ist oft unspezifisch, doch kann die MRT bei der Sicherung der Diagnose helfen, vor allem in den Frühstadien der Erkrankung bei präsymptomatischen Patienten und Trägern. In diesem Artikel wird ein schrittweises Vorgehen bei der Diagnosesicherung von Leukodystrophien im Erwachsenenalter in Form eines Algorithmus vorgeschlagen, um die Bandbreite der Differenzialdiagnosen einzugrenzen.

Abstract

Leukodystrophies usually affect children, but in the last several decades, many instances of adult leukodystrophies have been reported in the medical literature. Because the clinical manifestation of these diseases can be nonspecific, MRI can help with establishing a diagnosis. A step-by-step approach to assist in the diagnosis of adult leukodystrophies is proposed in this article. The first step is to identify symmetric white matter involvement, which is more commonly observed in these patients. The next step is to fit the symmetric white matter involvement into one of the proposed patterns. However, a patient may present with more than one pattern of white matter involvement. Thus, the third step is to evaluate for five distinct characteristics – including enhancement, lesions with signal intensity similar to that of cerebrospinal fluid, susceptibilityweighted MRI signal intensity abnormalities, abnormal peaks at MR spectroscopy, and spinal cord involvement – to further narrow the differential diagnosis.

Kernaussagen
  • Die symmetrische Beteiligung der weißen Substanz im MRT-Bild ist ein wesentlicher Befund bei Patienten mit Leukodystrophien im Erwachsenenalter, da Leukodystrophien häufig mit erblichen Störungen assoziiert sind.

  • T2w und FLAIR-MRT-Sequenzen sind am besten geeignet, um die Beteiligung der weißen Substanz zu bestimmen.

  • Manchmal zeigt ein und derselbe Patient mehr als ein Beteiligungsmuster der weißen Substanz im Verlauf der Erkrankung und eine bestimmte Leukodystrophie kann sich mit mehr als einem dieser Muster manifestieren. In dieser Situation hilft die Suche nach charakteristischen Befunden (Schritt 3), die möglichen Differenzialdiagnosen einzuschränken und gezielt spezifische bestätigende Untersuchungen durchzuführen.

  • Das periventrikuläre Muster ist wahrscheinlich das häufigste aller Muster und unzählige verschiedene Erkrankungen, einschließlich anderer Erkrankungen als Leukodystrophien, können sich mit einer periventrikulären Beteiligung manifestieren.

  • Das Peak-Muster in der MR-Spektroskopie könnte als ein potenzieller nicht invasiver Biomarker des Therapieansprechens bei behandelbaren Erkrankungen wie der zerebrotendinösen Xanthomatose eingesetzt werden.



Publikationsverlauf

Artikel online veröffentlicht:
06. Mai 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Kevelam SH, Steenweg ME, Srivastava S. et al. Update on leukodystrophies: a historical perspective and adapted definition. Neuropediatrics 2016; 47: 349-354
  • 2 Costello DJ, Eichler AF, Eichler FS. Leukodystrophies: classification, diagnosis, and treatment. Neurologist 2009; 15: 319-328
  • 3 Pastores GM. Leukoencephalopathies and leukodystrophies. Continuum (Minneap. Minn.) 2010; 16: 102-119
  • 4 Helman G, Venkateswaran S, Vanderver A. The spectrum of adult-onset heritable white-matter disorders. Handb Clin Neurol 2018; 148: 669-692
  • 5 van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol (Berl.) 2017; 134: 351-382
  • 6 Parikh S, Bernard G, Leventer RJ. et al. A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephalopathies. Mol Genet Metab 2015; 114: 501-515
  • 7 Köhler W, Curiel J, Vanderver A. Adulthood leukodystrophies. Nat Rev Neurol 2018; 14 : 94-105
  • 8 Lynch DS, Rodrigues Brandão de Paiva A, Zhang WJ. et al. Clinical and genetic characterization of leukoencephalopathies in adults. Brain 2017; 140: 1204-1211
  • 9 Leite CC, Lucato LT, Santos GT. et al. Imaging of adult leukodystrophies. Arq Neuropsiquiatr 2014; 72: 625-632
  • 10 Morgenlander JC. MRI pattern approach of adult-onset inherited leukoencephalopathies. Neurol Clin Pract 2016; 6: 96
  • 11 Schiffmann R, van der Knaap MS. Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 2009; 72: 750-759
  • 12 Ayrignac X, Carra-Dalliere C, Menjot de Champfleur N. et al. Adult-onset genetic leukoencephalopathies: a MRI pattern-based approach in a comprehensive study of 154 patients. Brain 2015; 138: 284-292
  • 13 Renaud DL. Adult-onset leukoencephalopathies. Continuum (Minneap. Minn.) 2016; 22: 559-578
  • 14 Ayrignac X, Boutiere C, Carra-Dalliere C. et al. Posterior fossa involvement in the diagnosis of adult-onset inherited leukoencephalopathies. J Neurol 2016; 263: 2361-2368
  • 15 Ahmed RM, Murphy E, Davagnanam I. et al. A practical approach to diagnosing adult onset leukodystrophies. J Neurol Neurosurg Psychiatry 2014; 85: 770-781
  • 16 Moser HW. Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 1997; 120: 1485-1508
  • 17 Kumar AJ, Köhler W, Kruse B. et al. MR findings in adult-onset adrenoleukodystrophy. AJNR Am J Neuroradiol 1995; 16: 1227-1237
  • 18 Loes DJ, Fatemi A, Melhem ER. et al. Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology 2003; 61: 369-374
  • 19 Loes DJ, Hite S, Moser H. et al. Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am J Neuroradiol 1994; 15: 1761-1766
  • 20 Melhem ER, Loes DJ, Georgiades CS. et al. X-linked adrenoleukodystrophy: the role of contrast-enhanced MR imaging in predicting disease progression. AJNR Am J Neuroradiol 2000; 21: 839-844
  • 21 Abdelhalim AN, Alberico RA, Barczykowski AL. et al. Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype. Pediatr Neurol 2014; 50: 127-134
  • 22 Köhler W. Leukodystrophies with late disease onset: an update. Curr Opin Neurol 2010; 23: 234-241
  • 23 Debs R, Froissart R, Aubourg P. et al. Krabbe disease in adults: phenotypic and genotypic update from a series of 11 cases and a review. J Inherit Metab Dis 2013; 36: 859-868
  • 24 Sedel F, Tourbah A, Fontaine B. et al. Leukoencephalopathies associated with inborn errors of metabolism in adults. J Inherit Metab Dis 2008; 31: 295-307
  • 25 Husain AM, Altuwaijri M, Aldosari M. Krabbe disease: neurophysiologic studies and MRI correlations. Neurology 2004; 63: 617-620
  • 26 Wenger DA, Rafi MA, Luzi P. et al. Krabbe disease: genetic aspects and progress toward therapy. Mol Genet Metab 2000; 70: 1-9
  • 27 Wenger DA, Rafi MA, Luzi P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat 1997; 10: 268-279
  • 28 Farina L, Bizzi A, Finocchiaro G. et al. MR imaging and proton MR spectroscopy in adult Krabbe disease. AJNR Am J Neuroradiol 2000; 21: 1478-1482
  • 29 van Rappard DF, Boelens JJ, Wolf NI. Metachromatic leukodystrophy: disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab 2015; 29: 261-273
  • 30 Cesani M, Lorioli L, Grossi S. et al. Mutation update of ARSA and PSAP genes causing metachromatic leukodystrophy. Hum Mutat 2016; 37: 16-27
  • 31 Hageman AT, Gabreëls FJ, de Jong JG. et al. Clinical symptoms of adult metachromatic leukodystrophy and arylsulfatase A pseudodeficiency. Arch Neurol 1995; 52 : 408-413
  • 32 Groeschel S, Kehrer C, Engel C. et al. Metachromatic leukodystrophy: natural course of cerebral MRI changes in relation to clinical course. J Inherit Metab Dis 2011; 34: 1095-1102
  • 33 Eichler F, Grodd W, Grant E. et al. Metachromatic leukodystrophy: a scoring system for brain MR imaging observations. AJNR Am J Neuroradiol 2009; 30: 1893-1897
  • 34 Van Mieghem F, Van Goethem JW, Parizel PM. et al. MR of the brain in Sjögren-Larsson syndrome. AJNR Am J Neuroradiol 1997; 18: 1561-1563
  • 35 Rizzo WB. Genetics and prospective therapeutic targets for Sjögren-Larsson syndrome. Expert Opin Orphan Drugs 2016; 4: 395-406
  • 36 Willemsen MAAP, Van Der Graaf M, Van Der Knaap MS. et al. MR imaging and proton MR spectroscopic studies in Sjögren-Larsson syndrome: characterization of the leukoencephalopathy. AJNR Am J Neuroradiol 2004; 25: 649-657
  • 37 Vanderver A. Genetic leukoencephalopathies in adults. Continuum (Minneap. Minn.) 2016; 22: 916-942
  • 38 Steenweg ME, Salomons GS, Yapici Z. et al. L-2-Hydroxyglutaric aciduria: pattern of MR imaging abnormalities in 56 patients. Radiology 2009; 251: 856-865
  • 39 Namekawa M, Takiyama Y, Honda J. et al. Adult-onset Alexander disease with typical „tadpole“ brainstem atrophy and unusual bilateral basal ganglia involvement: a case report and review of the literature. BMC Neurol 2010; 10: 21
  • 40 Balbi P, Salvini S, Fundarò C. et al. The clinical spectrum of late-onset Alexander disease: a systematic literature review. J Neurol 2010; 257: 1955-1962
  • 41 Sawaishi Y. Review of Alexander disease: beyond the classical concept of leukodystrophy. Brain Dev 2009; 31: 493-498
  • 42 Pareyson D, Fancellu R, Mariotti C. et al. Adult-onset Alexander disease: a series of eleven unrelated cases with review of the literature. Brain 2008; 131: 2321-2331
  • 43 van der Knaap MS, Naidu S, Breiter SN. et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol 2001; 22: 541-552
  • 44 Scheper GC, van der Klok T, van Andel RJ. et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 2007; 39: 534-539
  • 45 van der Knaap MS, Salomons GS. Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. In: Adam MP, Ardinger HH, Pagon RA. et al. eds. GeneReviews. Seattle, Wash.: University of Washington; 2010: 1993-2018
  • 46 Labauge P, Dorboz I, Eymard-Pierre E. et al. Clinically asymptomatic adult patient with extensive LBSL MRI pattern and DARS2 mutations. J Neurol 2011; 258 : 335-337
  • 47 Tzoulis C, Tran GT, Gjerde IO. et al. Leukoencephalopathy with brainstem and spinal cord involvement caused by a novel mutation in the DARS2 gene. J Neurol 2012; 259 : 292-296
  • 48 Björkhem I, Fausa O, Hopen G. et al. Role of the 26-hydroxylase in the biosynthesis of bile acids in the normal state and in cerebrotendinous xanthomatosis: an in vivo study. J Clin Invest 1983; 71: 142-148
  • 49 Dotti MT, Rufa A, Federico A. Cerebrotendinous xanthomatosis: heterogeneity of clinical phenotype with evidence of previously undescribed ophthalmological findings. J Inherit Metab Dis 2001; 24: 696-706
  • 50 Federico A, Dotti MT. Cerebrotendinous xanthomatosis: clinical manifestations, diagnostic criteria, pathogenesis, and therapy. J Child Neurol 2003; 18: 633-638
  • 51 Embiruçu EK, Otaduy MC, Taneja AK. et al. MR spectroscopy detects lipid peaks in cerebrotendinous xanthomatosis. AJNR Am J Neuroradiol 2010; 31: 1347-1349
  • 52 Brunberg JA, Jacquemont S, Hagerman RJ. et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol 2002; 23: 1757-1766
  • 53 van der Knaap MS, Barth PG, Gabreëls FJ. et al. A new leukoencephalopathy with vanishing white matter. Neurology 1997; 48: 845-855
  • 54 Schiffmann R, Elroy-Stein O. Childhood ataxia with CNS hypomyelination/vanishing white matter disease: a common leukodystrophy caused by abnormal control of protein synthesis. Mol Genet Metab 2006; 88: 7-15
  • 55 van Den Boom R, Lesnik Oberstein SA, van Duinen SG. et al. Subcortical lacunar lesions: an MR imaging finding in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Radiology 2002; 224: 791-796
  • 56 Chabriat H, Joutel A, Dichgans M. et al. Cadasil. Lancet Neurol 2009; 8: 643-653
  • 57 Narayan SK, Gorman G, Kalaria RN. et al. The minimum prevalence of CADASIL in northeast England. Neurology 2012; 78: 1025-1027
  • 58 Konno T, Yoshida K, Mizuno T. et al. Clinical and genetic characterization of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia associated with CSF1R mutation. Eur J Neurol 2017; 24: 37-45
  • 59 Karle KN, Biskup S, Schüle R. et al. De novo mutations in hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS). Neurology 2013; 81: 2039-2044
  • 60 Nicholson AM, Baker MC, Finch NA. et al. CSF1R mutations link POLD and HDLS as a single disease entity. Neurology 2013; 80: 1033-1040
  • 61 Rademakers R, Baker M, Nicholson AM. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 2011; 44: 200-205
  • 62 Wider C, Van Gerpen JA, DeArmond S. et al. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD): a single entity?. Neurology 2009; 72: 1953-1959
  • 63 Konno T, Broderick DF, Mezaki N. et al. Diagnostic value of brain calcifications in adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. AJNR Am J Neuroradiol 2017; 38: 77-83
  • 64 Ayrignac X, Nicolas G, Carra-Dallière C. et al. Brain calcifications in adult-onset genetic leukoencephalopathies: a review. JAMA Neurol 2017; 74: 1000-1008
  • 65 Livingston JH, Mayer J, Jenkinson E. et al. Leukoencephalopathy with calcifications and cysts: a purely neurological disorder distinct from Coats plus. Neuropediatrics 2014; 45: 175-182
  • 66 Jenkinson EM, Rodero MP, Kasher PR. et al. Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat Genet 2016; 48: 1185-1192 ; published correction Nat Genet 2017; 49 (2): 317
  • 67 Paloneva J, Autti T, Raininko R. et al. CNS manifestations of Nasu-Hakola disease: a frontal dementia with bone cysts. Neurology 2001; 56: 1552-1558
  • 68 Kilic SA, Oner AY, Yuce C. et al. Imaging findings of Nasu-Hakola disease: a case report. Clin Imaging 2012; 36: 877-880
  • 69 Melberg A, Hallberg L, Kalimo H. et al. MR characteristics and neuropathology in adult-onset autosomal dominant leukodystrophy with autonomic symptoms. AJNR Am J Neuroradiol 2006; 27: 904-911
  • 70 Coffeen CM, McKenna CE, Koeppen AH. et al. Genetic localization of an autosomal dominant leukodystrophy mimicking chronic progressive multiple sclerosis to chromosome 5q31. Hum Mol Genet 2000; 9: 787-793