Nuklearmedizin 2019; 58(05): 352-362
DOI: 10.1055/a-0990-8898
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

68Ga-RM2 PET in PSMA- positive and -negative prostate cancer patients

68Ga-RM2 PET bei PSMA-positiven und -negativen Prostatakarzinompatienten
Sebastian Hoberück
1   Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Enrico Michler
1   Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Gerd Wunderlich
1   Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Steffen Löck
2   OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
,
Tobias Hölscher
3   Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Michael Froehner
4   Department of Urology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Anja Braune
1   Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Platzek Ivan
5   Department of Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Danilo Seppelt
5   Department of Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Klaus Zöphel
1   Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
,
Jörg Kotzerke
1   Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Germany
› Author Affiliations
Further Information

Publication History

02 July 2019

02 August 2019

Publication Date:
23 August 2019 (online)

Abstract

Aim68Ga-PSMA-11 is the gold standard for molecular imaging of prostate cancer. However, recurrent tumor manifestations or metastases cannot be detected in every case. Therefore, we investigated if there is an additive value of the gastrin-releasing peptide receptor (GRP-R) ligand 68Ga-RM2 compared to the well-established 68Ga-PSMA-11 in patients with (Group 1) and without (Group 2) pathologic PSMA-expression in different tumor stages.

Patients and Methods Sixteen men (median age: 74 years, range 50–80 years) with prostate cancer in different stages who had a recent negative (n = 8) or pathologic (n = 8) PSMA PET underwent a subsequent 68Ga-RM2 PET. Both examinations were analyzed qualitatively and quantitatively and compared in terms of pathologic and physiologic tracer distribution.

Results None of the PSMA-negative patients showed any pathological RM2-accumulation. Pathologic PSMA-uptake was observed in 8 patients of whom 5 had pathologic RM2-uptake. The number of patients with a local recurrence was equal in both scans (n = 3). Bone metastases and lymph node metastases were detected in less patients in RM2 PET compared to PSMA PET (n = 4 vs. 7 and n = 2 vs. 5, respectively). In one patient, PSMA-positive liver metastases were not detected in RM2. RM2 PET revealed two additional lesions indicative for bone metastases in two patients with multiple PSMA-positive bone metastases, which had no therapeutic consequence.

Conclusion At least in our small and heterogeneous patient population, 68Ga-RM2 showed no clinically relevant, additional benefit compared to 68Ga-PSMA-11 PET.

Zusammenfassung

Ziel68Ga-PSMA-11 ist der Goldstandard in der molekularen Bildgebung des Prostatakarzinoms. Jedoch gelingt die Detektion von primären Tumorrezidiven oder Metastasen nicht in jedem Fall. Daher wurde untersucht, ob der Gastrin Releasing Peptidrezeptor Ligand (GRP-L) 68Ga-RM2 einen Zusatznutzen bei Patienten mit (Gruppe 1) und ohne (Gruppe 2) pathologischer PSMA-Anreicherung in verschiedenen Tumorstadien bietet.

Patienten und Methoden Sechzehn Patienten mit Prostatakarzinom (Medianes Alter: 74, Min-Max: 50–80 Jahre) verschiedener Stadien wurden nach rezenter PSMA-11-PET/CT mit (n = 8) bzw. ohne (n = 8) pathologischer PSMA-Liganden-Anreicherung anschließend mittels 68Ga-RM2 PET untersucht. Die pathologischen Anreicherungen sowie die physiologische Radiotracerverteilung beider Untersuchungen wurden qualitativ und quantitativ bewertet und verglichen.

Ergebnisse Keiner der 8 PSMA-negativen Patienten zeigte eine pathologische 68Ga-RM2-Anreicherung. Acht PSMA-positiven Patienten standen insgesamt 5 RM2-positve Patienten gegenüber. Während sich die Anzahl der detektierten Lokalrezidive (n = 3) zwischen beiden Tracern nicht unterschied, wurden in der RM2-Studie weniger Patienten mit mindestens einer Knochenmetastase (n = 4 vs. 7) und mit mindestens einer Lymphknotenmetastase (n = 2 vs. 5) detektiert. PSMA-positive Lebermetastasen eines Patienten zeigten ebenfalls kein RM2-Korrelat. Insgesamt wurden mittels 68Ga-RM2 lediglich zwei zusätzliche Metastasen typische ossäre Läsionen bei Patienten mit zahlreichen PSMA-positiven Knochenmetastasen detektiert. In der untersuchten Kohorte konnte durch die 68Ga-RM2-Diagnostik kein Zusatznutzen bezüglich eines veränderten therapeutischen Procederes ermittelt werden.

Schlussfolgerung Zumindest in unserem kleinen und heterogenen Patientenkollektiv zeigte 68Ga-RM2 keinen klinisch relevanten Zusatznutzen gegenüber der 68Ga-PSMA-11 PET.

 
  • References

  • 1 Siegel R, Ma J, Zou Z. et al. Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9-29
  • 2 Suardi N, Porter CR, Reuther AM. et al. A nomogram predicting long-term biochemical recurrence after radical prostatectomy. Cancer 2008; 112: 1254-1263
  • 3 Evans JD, Jethwa KR, Ost P. et al. Prostate cancer–specific PET radiotracers: A review on the clinical utility in recurrent disease. Pract Radiat Oncol 2018; 8: 28-39
  • 4 Herlemann A, Wenter V, Kretschmer A. et al. 68Ga-PSMA Positron Emission Tomography/Computed Tomography Provides Accurate Staging of Lymph Node Regions Prior to Lymph Node Dissection in Patients with Prostate Cancer. Eur Urol 2016; 70: 553-557
  • 5 Uprimny C, Kroiss AS, Decristoforo C. et al. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging 2017; 44: 941-949
  • 6 Meyrick DP, Asokendaran M, Skelly LA. et al. The role of 68Ga-PSMA-I & amp;T PET/CT in the pretreatment staging of primary prostate cancer. Nucl Med Commun 2017; 38: 956-963
  • 7 Ghosh A, Heston WDW. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 2004; 91: 528-539
  • 8 Sweat SD, Pacelli A, Murphy GP. et al. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998; 52: 637-640
  • 9 Silver DA, Pellicer I, Fair WR. et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 1997; 3: 81-85
  • 10 Chang SS. Overview of prostate-specific membrane antigen. Rev Urol 2004; 6 Suppl 10 S13-8
  • 11 Udovicich C, Perera M, Hofman M. et al. 68 Ga-prostate-specific membrane antigen-positron emission tomography/computed tomography in advanced prostate cancer: Current state and future trends. Prostate Int 2017; 5: 125-129
  • 12 Bostwick DG, Pacelli A, Blute M. et al. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 1998; 82: 2256-2261
  • 13 Evans MJ, Smith-Jones PM, Wongvipat J. et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci 2011; 108: 9578-9582
  • 14 Wright GL, Grob BM, Haley C. et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 1996; 48: 326-334
  • 15 Afshar-Oromieh A, Malcher A, Eder M. et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 2013; 40: 486-495
  • 16 Afshar-Oromieh A, Haberkorn U, Eder M. et al. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging 2012; 39: 1085-1086
  • 17 Kratochwil C, Bruchertseifer F, Rathke H. et al. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J Nucl Med 2017; 58: 1624-1631
  • 18 Sheikhbahaei S, Afshar-Oromieh A, Eiber M. et al. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging 2017; 44: 2117-2136
  • 19 Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 2013; 13: 951-962
  • 20 Bouchelouche K, Turkbey B, Choyke PL. PSMA PET and Radionuclide Therapy in Prostate Cancer. Semin Nucl Med 2016; 46: 522-535
  • 21 Schmidt-Hegemann N-S, Fendler WP, Buchner A. et al. Detection level and pattern of positive lesions using PSMA PET/CT for staging prior to radiation therapy. Radiat Oncol 2017; 12: 176
  • 22 Weineisen M, Schottelius M, Simecek J. et al. 68Ga- and 177Lu-Labeled PSMA I & amp;T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J Nucl Med 2015; 56: 1169-1176
  • 23 Ahmadzadehfar H, Rahbar K, Kürpig S. et al. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res 2015; 5: 114
  • 24 Rauscher I, Maurer T, Beer AJ. et al. Value of 68Ga-PSMA HBED-CC PET for the Assessment of Lymph Node Metastases in Prostate Cancer Patients with Biochemical Recurrence: Comparison with Histopathology After Salvage Lymphadenectomy. J Nucl Med 2016; 57: 1713-1719
  • 25 Morigi JJ, Stricker PD, van Leeuwen PJ. et al. Prospective Comparison of 18F-Fluoromethylcholine Versus 68Ga-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and Are Being Considered for Targeted Therapy. J Nucl Med 2015; 56: 1185-1190
  • 26 Zacho HD, Nielsen JB, Afshar-Oromieh A. et al. Prospective comparison of 68Ga-PSMA PET/CT, 18F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2018; 45: 1884-1897
  • 27 Cornford P, Bellmunt J, Bolla M. et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. Eur Urol 2017; 71: 630-642
  • 28 Schmidt-Hegemann N-S, Fendler WP, Ilhan H. et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat Oncol 2018; 13: 37
  • 29 Corfield J, Perera M, Bolton D. et al. 68Ga-prostate specific membrane antigen (PSMA) positron emission tomography (PET) for primary staging of high-risk prostate cancer: a systematic review. World J Urol 2018; 36: 519-527
  • 30 Mannweiler S, Amersdorfer P, Trajanoski S. et al. Heterogeneity of Prostate-Specific Membrane Antigen (PSMA) Expression in Prostate Carcinoma with Distant Metastasis. Pathol Oncol Res 2009; 15: 167-172
  • 31 Albrecht S, Buchegger F, Soloviev D. et al. 11C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 2007; 34: 185-196
  • 32 Beheshti M, Haim S, Zakavi R. et al. Impact of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J Nucl Med 2013; 54: 833-840
  • 33 Brogsitter C, Zöphel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging 2013; 40: 18-27
  • 34 Oyama N, Miller TR, Dehdashti F. et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003; 44: 549-555
  • 35 Picchio M, Messa C, Landoni C. et al. Value of [11 C]choline-Positron Emission Tomography for Re-Staging Prostate Cancer: A Comparison With [18 F]fluorodeoxyglucose-Positron Emission Tomography. J Urol 2003; 169: 1337-1340
  • 36 Wachter S, Tomek S, Kurtaran A. et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 2006; 24: 2513-2519
  • 37 Kähkönen E, Jambor I, Kemppainen J. et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 2013; 19: 5434-5443
  • 38 Jensen RT, Battey JF, Spindel ER. et al. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60: 1-42
  • 39 Sun B, Halmos G, Schally AV. et al. Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate 2000; 42: 295-303
  • 40 Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: Relation to neoplastic transformation. 1999 59. 1152-1159 I
  • 41 Reubi JC, Wenger S, Schmuckli-Maurer J. et al. Bombesin receptor subtypes in human cancers: detection with the universal radioligand (125)I-[D-TYR(6), beta-ALA(11), PHE(13), NLE(14)] bombesin(6–14). Clin Cancer Res 2002; 8: 1139-1146
  • 42 Moreno P, Ramos-Álvarez I, Moody TW. et al. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 2016; 20: 1055-1073
  • 43 Minamimoto R, Hancock S, Schneider B. et al. Pilot Comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer. J Nucl Med 2016; 57: 557-562
  • 44 Kähkönen E, Jambor I, Kemppainen J. et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 2013; 19: 5434-5443
  • 45 Derlin T, Weiberg D, von Klot C. et al. 68Ga-PSMA I & amp;T PET/CT for assessment of prostate cancer: evaluation of image quality after forced diuresis and delayed imaging. Eur Radiol 2016; 26: 4345-4353
  • 46 Heußer T, Mann P, Rank CM. et al. Investigation of the halo-artifact in 68Ga-PSMA-11-PET/MRI. PLoS One 2017; 12: e0183329
  • 47 Minamimoto R, Sonni I, Hancock S. et al. Prospective Evaluation of 68 Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer and Negative Findings on Conventional Imaging. J Nucl Med 2018; 59: 803-808
  • 48 Eder M, Neels O, Müller M. et al. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals 2014; 7: 779-796
  • 49 Plodeck V, Rahbari NN, Weitz J. et al. FDG-PET/MRI in patients with pelvic recurrence of rectal cancer: first clinical experiences. Eur Radiol 2018; 29: 422-428
  • 50 Kotzerke J, Böhmer D, Schlomm T. et al. PSMA-PET/CT has to be performed in every patient with biochemical recurrence following radical prostatectomy for early tumor detection. Nuklearmedizin 2018; 57: 69-73
  • 51 Eiber M, Maurer T, Souvatzoglou M. et al. Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy. J Nucl Med 2015; 56: 668-674
  • 52 de Visser M, van Weerden WM, de Ridder CMA. et al. Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J Nucl Med 2007; 48: 88-93
  • 53 Dumont RA, Tamma M, Braun F. et al. Targeted radiotherapy of prostate cancer with a gastrin-releasing peptide receptor antagonist is effective as monotherapy and in combination with rapamycin. J Nucl Med 2013; 54: 762-769
  • 54 Maina T, Nock BA, Kulkarni H. et al. Theranostic Prospects of Gastrin-Releasing Peptide Receptor-Radioantagonists in Oncology. PET Clin 2017; 12: 297-309
  • 55 Eder M, Schäfer M, Bauder-Wüst U. et al. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate 2014; 74: 659-668