Nuklearmedizin 2019; 58(05): 395-400
DOI: 10.1055/a-0981-5709
Original Article

Effects of Maturation on Striatal Dopamine Transporter Availability in Rats

Auswirkungen der Reifung auf die Verfügbarkeit von striatalen Dopamintransportern bei Ratten
Seunghyeon Shin
1   Department of Nuclear Medicine, Samsung Changwon Hospital, Changwon, Republic of Korea
,
Keunyoung Kim
2   Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
,
Kyoungjune Pak
2   Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
,
Hyun-Yeol Nam
1   Department of Nuclear Medicine, Samsung Changwon Hospital, Changwon, Republic of Korea
,
Seong-Jang Kim
3   Department of Nuclear Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
,
In Joo Kim
2   Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
› Author Affiliations

Abstract

Objectives We investigated the effects of maturation on dopamine transporter (DAT) availability in the rat via longitudinal monitoring with positron emission tomography (PET).

Methods Eight 5-week-old male Sprague-Dawley rats (113–186 g) were used. Four 18F-FP-CIT PET scans were taken at 5, 10, 15, and 20 weeks. Baseline PET images were manually fused with the built-in magnetic resonance imaging template; volumes of interest (VOIs) were manually defined by placing a spherical region around the hot spot with the maximum count rate. VOIs were placed on bilateral caudate and putamen (CPu), nucleus accumbens (NAc), and cerebellum. Specific binding ratios (SBRs) were calculated as follows: (mean uptake of bilateral targets – mean uptake of bilateral cerebellum)/(mean uptake of bilateral cerebellum).

Results In CPu, SBRs at 5 weeks (3.25 ± 0.66) were lower than those at 10 weeks (4.59 ± 0.78, p = 0.1151) and at 15 weeks (5.56 ± 0.92, p = 0.0182). In NAc, SBRs at 5 weeks (1.41 ± 0.47) were lower than those at 10 weeks (2.03 ± 0.36, p = 0.1960) and at 15 weeks (2.43 ± 0.50, p = 0.0427). SBRs in CPu and NAc significantly increased with maturation until 15 weeks. However, differences in SBR between 15 and 20 weeks were not significant.

Conclusions Striatal DAT availability increases until 15 weeks postnatally, then remains stable, reflecting maturation of the dopaminergic system in rats.

Zusammenfassung

Ziele Wir untersuchten die Auswirkungen der Reifung auf die Verfügbarkeit von Dopamintransportern (DAT) in der Ratte durch longitudinale Beobachtung mit Positronen-Emissions-Tomografie (PET).

Methoden Es wurden acht 5 Wochen alte männliche Sprague-Dawley-Ratten (113–186 g) verwendet. Vier 18F-FP-CIT PET-Aufnahmen wurden nach 5, 10, 15 und 20 Wochen durchgeführt. Die PET-Bilder zu Studienbeginn wurden manuell mit dem eingebauten Magnetresonanztomografie-Template fusioniert. Volumes of Interest (VOIs) wurden manuell definiert, indem ein sphärischer Bereich mit der maximalen Zählrate um den Hotspot gelegt wurde. VOIs wurden auf den bilateralen Caudatus und Putamen (CPu), Nucleus accumbens (NAc) und das Kleinhirn gelegt. Die spezifischen Bindungsratios (SBRs) wurden wie folgt berechnet: (mittlere Aufnahme der bilateralen Ziele – mittlere Aufnahme des bilateralen Kleinhirns)/(mittlere Aufnahme des bilateralem Kleinhirn).

Ergebnisse Im CPu waren die SBRs nach 5 Wochen (3,25 ± 0,66) niedriger als nach 10 Wochen (4,59 ± 0,78, p = 0,1151) und nach 15 Wochen (5,56 ± 0,92, p = 0,0182). Im NAc waren die SBRs nach 5 Wochen (1,41 ± 0,47) niedriger als nach 10 Wochen (2,03 ± 0,36, p = 0,1960) und nach 15 Wochen (2,43 ± 0,50, p = 0,0427). Die SBRs in CPu und NAc nahmen mit der Reifung bis 15 Wochen signifikant zu. Allerdings waren die Unterschiede in der SBR zwischen 15 und 20 Wochen nicht signifikant.

Schlussfolgerungen Die Verfügbarkeit von striatalen DAT steigt bis 15 Wochen nach der Geburt an und bleibt dann stabil, was die Reifung des dopaminergen Systems bei Ratten widerspiegelt.



Publication History

Received: 12 May 2019

Accepted: 22 July 2019

Publication Date:
20 August 2019 (online)

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Jackson SJ, Andrews N, Ball D. et al. Does age matter? The impact of rodent age on study outcomes. Lab Anim 2017; 51: 160-169
  • 2 Mengler L, Khmelinskii A, Diedenhofen M. et al. Brain maturation of the adolescent rat cortex and striatum: changes in volume and myelination. Neuroimage 2014; 84: 35-44
  • 3 McCutcheon JE, Marinelli M. Age matters. Eur J Neurosci 2009; 29: 997-1014
  • 4 Moll GH, Mehnert C, Wicker M. et al. Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Brain Res Dev Brain Res 2000; 119: 251-257
  • 5 Flores G, de Jesus Gomez-Villalobos M, Rodriguez-Sosa L. Prenatal amphetamine exposure effects on dopaminergic receptors and transporter in postnatal rats. Neurochem Res 2011; 36: 1740-1749
  • 6 Semple BD, Blomgren K, Gimlin K. et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 2013; 106–107: 1-16
  • 7 Joel D, Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 2000; 96: 451-474
  • 8 Tang K, Low MJ, Grandy DK. et al. Dopamine-dependent synaptic plasticity in striatum during in vivo development. Proc Natl Acad Sci U S A 2001; 98: 1255-1260
  • 9 Park E. A new era of clinical dopamine transporter imaging using 123I-FP-CIT. J Nucl Med Technol 2012; 40: 222-228
  • 10 Jin S, Oh M, Oh SJ. et al. Differential Diagnosis of Parkinsonism Using Dual-Phase F-18 FP-CIT PET Imaging. Nucl Med Mol Imaging 2013; 47: 44-51
  • 11 Bandeira F, Lent R, Herculano-Houzel S. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci U S A 2009; 106: 14108-14113
  • 12 Christensen J, Sorensen JC, Ostergaard K. et al. Early postnatal development of the rat corticostriatal pathway: an anterograde axonal tracing study using biocytin pellets. Anat Embryol (Berl) 1999; 200: 73-80
  • 13 Tepper JM, Sharpe NA, Koos TZ. et al. Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev Neurosci 1998; 20: 125-145
  • 14 Nugent S, Tremblay S, Chen KW. et al. Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol Aging 2014; 35: 1386-1395
  • 15 Raz N, Torres IJ, Acker JD. Age, gender, and hemispheric differences in human striatum: a quantitative review and new data from in vivo MRI morphometry. Neurobiol Learn Mem 1995; 63: 133-142
  • 16 Rinne JO, Lonnberg P, Marjamaki P. Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Res 1990; 508: 349-352
  • 17 Jiang D, Lu X, Li Z. et al. Increased Vesicular Monoamine Transporter 2 (VMAT2) and Dopamine Transporter (DAT) Expression in Adolescent Brain Development: A Longitudinal Micro-PET/CT Study in Rodent. Front Neurosci 2018; 12: 1052
  • 18 Norman AB, Battaglia G, Creese I. Differential recovery rates of rat D2 dopamine receptors as a function of aging and chronic reserpine treatment following irreversible modification: a key to receptor regulatory mechanisms. J Neurosci 1987; 7: 1484-1491
  • 19 Hamezah HS, Durani LW, Ibrahim NF. et al. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions. Exp Gerontol 2017; 99: 69-79
  • 20 Meng SZ, Ozawa Y, Itoh M. et al. Developmental and age-related changes of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia. Brain Res 1999; 843: 136-144
  • 21 Volkow ND, Ding YS, Fowler JS. et al. Dopamine transporters decrease with age. J Nucl Med 1996; 37: 554-559
  • 22 Gordon I, Weizman R, Rosenne E. et al. Developmental and age-related alterations in rat brain presynaptic dopaminergic mechanisms. Brain Res Dev Brain Res 1995; 85: 225-228
  • 23 Shimizu I, Prasad C. Relationship between [3 H]mazindol binding to dopamine uptake sites and [3 H]dopamine uptake in rat striatum during aging. J Neurochem 1991; 56: 575-579
  • 24 Ninerola-Baizan A, Rojas S, Roe-Vellve N. et al. Dopamine transporter imaging in the aged rat: a [(1)(2)(3)I]FP-CIT SPECT study. Nucl Med Biol 2015; 42: 395-398
  • 25 Kawamura K, Oda K, Ishiwata K. Age-related changes of the [11 C]CFT binding to the striatal dopamine transporters in the Fischer 344 rats: a PET study. Ann Nucl Med 2003; 17: 249-253
  • 26 Cumming P, Maschauer S, Riss PJ. et al. Perturbed Development of Striatal Dopamine Transporters in Fatty Versus Lean Zucker Rats: a Follow-up Small Animal PET Study. Mol Imaging Biol 2015; 17: 521-528
  • 27 Tarazi FI, Tomasini EC, Baldessarini RJ. Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neurosci Lett 1998; 254: 21-24
  • 28 Coulter CL, Happe HK, Bergman DA. et al. Localization and quantification of the dopamine transporter: comparison of [3 H]WIN 35,428 and [125I]RTI-55. Brain Res 1995; 690: 217-224
  • 29 Nikolaus S, Wittsack HJ, Beu M. et al. GABAergic Control of Nigrostriatal and Mesolimbic Dopamine in the Rat Brain. Front Behav Neurosci 2018; 12: 38
  • 30 Nikolaus S, Wittsack HJ, Beu M. et al. Amantadine enhances nigrostriatal and mesolimbic dopamine function in the rat brain in relation to motor and exploratory activity. Pharmacol Biochem Behav 2019; 179: 156-170
  • 31 Hammelrath L, Skokic S, Khmelinskii A. et al. Morphological maturation of the mouse brain: An in vivo MRI and histology investigation. Neuroimage 2016; 125: 144-152
  • 32 Deumens R, Blokland A, Prickaerts J. Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 2002; 175: 303-317
  • 33 Pouladi MA, Morton AJ, Hayden MR. Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 2013; 14: 708-721
  • 34 Tatsch K, Poepperl G. Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update. J Nucl Med 2013; 54: 1331-1338