Osteologie 2019; 28(03): 192-201
DOI: 10.1055/a-0945-1376
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Körperliches Training zur Frakturprophylaxe des älteren Menschen

Evidenz und trainingsmethodische Umsetzung am Beispiel der Erlanger Fitness und Osteoporose-Präventions-Studie (EFOPS)Physical training for fracture prophylaxis of the elderlyEvidence and training methodological implementation using the example of the Erlangen Fitness and Osteoporosis Prevention Study (EFOPS)
Wolfgang Kemmler
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Deutschland
,
Matthias Kohl
2   Fakultät Medizin und Gesundheitswissenschaften, Fachhochschule Furtwangen, Deutschland
,
Klaus Engelke
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Deutschland
,
Simon von Stengel
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Deutschland
› Author Affiliations
Further Information

Publication History

24 May 2019

04 June 2019

Publication Date:
12 September 2019 (online)

Zusammenfassung

Körperliches Training kann alle Größen des Frakturrisikos positiv beeinflussen, ein direkter Nachweis des frakturreduktiven Potentials fehlt indes. Ziel dieser Übersicht ist es, den frakturpräventiven Effekt körperlichen Trainings zu belegen und die trainings-wissenschaftlich/organisatorische Vorgehensweise am Beispiel der Erlanger Fitness- und Osteoporose Präventions-Studie zu diskutieren.

137 früh-postmenopausale Frauen mit Osteopenie verteilten sich 1998 auf die Trainings- (TG) und die Kontrollgruppe (KG) der Studie. Primärer Endpunkt war die Häufigkeit niedrig-traumatischer klinischer Frakturen.

Nach 16-jähriger Studiendauer wurden 105 Teilnehmerinnen mit 1680 Teilnehmerjahren in die Analyse eingeschlossen. Die Frakturrate niedrig-traumatischer Frakturen (0,42; 95 % CI: 0,20–0,86) sowie osteoporotischer Hauptfrakturen (0,37; 0,14–0,88) lagen in der TG signifikant niedriger als in der KG. Die Knochendichte an Lendenwirbelsäule (TG: –1,5 ± 5,0 % vs. KG: –5,8 ± 6,4 %) und Schenkelhals (TG: –6,5 ± 4,6 % vs. KG: –9,6 ± 5,0 %) nahm in beiden Gruppen z.T. signifikant ab, die Reduktion in der KG war jedoch für beide Regionen signifikant (p ≤ .001) deutlicher. Im Rahmen der EFOPS durchgeführte Substudien zu trainingswissenschaftlichen Aspekten zeigten weiterhin, dass (1) ein schnellkräftig durchgeführtes (Kraft-)Training signifikant günstigere Effekte auf die Knochendichte ausübt als ein mit moderater oder langsamer Bewegungsgeschwindigkeit durchgeführtes Training. (2) Eine Trainingsperiodisierung im Vergleich zur simplen Progression der Belastung günstigere Effekte auf Muskelkraft, Knochendichte und Teilnehmer-Compliance hat und (3) dass eine Trainingsfrequenz von weniger als zwei Trainingseinheiten/Woche auch bei hoher Reizintensität und -rate keinerlei positive Effekte auf die Knochendichte auslöst.

Das unter besonderer Berücksichtigung physiologischer und trainingswissenschaftlicher Prinzipien sowie Vorgaben des ambulanten Rehabilitationssports durchgeführte Projekt belegt den klinisch hochrelevanten, frakturpräventiven Effekt eines körperlichen Trainings bei früh-postmenopausalen Frauen.

Abstract

Exercise might be one of the most effective therapies to prevent low-traumatic fractures. However, there is still no definite evidence for fracture-preventing effects of exercise on bone. Further, the multiple training aims (i. e. bone strengthening, fall- and fall-impact reduction), corresponding types of exercise and proper composition of exercise parameters, designing effective, safe and customized exercise protocols makes this far from trivial. Moreover, bearing in mind that subjects should maintain exercise life-long, the attractiveness of the exercise program is highly relevant. The aim of the present article is to (a) provide evidence for the fracture-preventing effect of exercise and (b) discuss the generation of effective exercise strategies based on the Erlanger Fitness and Osteoporosis Prevention Study (EFOPS), a 16-year intervention study focusing on low-traumatic clinical fractures.

Hundred thirty-seven (137) early postmenopausal women with osteopenia were included in the EFOPS project in 1998. Due to the long-term approach of the study, we applied a non-randomized design with a non-equally balanced distribution of the exercise (EG: n = 86) vs. control (CG). The primary endpoint was the fracture rate of low-traumatic clinical fractures; secondary endpoints were rate of major osteoporotic fractures and development of bone mineral density (BMD). However, apart from these main study aims, several exercise-related issues were addressed in sub-studies particularly during the first six study years.

After 16 years, 105 participants with 1680 participant years were included in the final analysis. The fracture rates of low-traumatic fractures (0.42; 95 % CI: 0.20–0.86) and osteoporotic main fractures (0.37; 95 % CI: 0.14–0.88) were significantly lower in the EG compared to the CG. The exercise effect on BMD at the lumbar spine (EG: –1.5 ± 5.0 % vs. CG: –5.8 ± 6.4 %; p < .001) and femoral neck (–6.5 ± 4.6 % vs.–9.6 ± 5.0 %, p < .001) consistently increased during the study course. Sub-studies focusing on BMD and strength effects indicated among others that (a) power trainings is superior to strength training to affect BMD; (b) periodized approaches might be more effective for increasing strength and BMD and maintaining compliance compared with strategies relying on progression only; (c) exercise frequency below 2 sessions/week did not affect BMD even with high strain magnitude and rates.

In summary, a sport-scientific approach that clearly scheduled exercise type, exercise parameters and exercise principles and adequately incorporating basic principles of bone metabolism and fall risk might be the most promising strategy to address fracture risk in older people. Apart from sport-science and medicine, however, it is essential to implement the program in an attractive social setting that enables regular, individualized and effective, but also safe and pleasurable exercise training to facilitate subjects’ adherence.

 
  • Literatur

  • 1 Burge R, Dawson-Hughes B, Solomon DH. et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 2007; 22: 465-475
  • 2 Icks A, Arend W, Becker C. et al. Incidence of hip fractures in Germany, 1995–2010. Arch Osteoporos 2013; 8: 140
  • 3 Fink HA, Milavetz DL, Palermo L. et al. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa?. J Bone Miner Res 2005; 20: 1216-1222
  • 4 Konnopka A, Jerusel N, Konig HH. The health and economic consequences of osteopenia- and osteoporosis-attributable hip fractures in Germany: estimation for 2002 and projection until 2050. Osteoporos Int 2009; 20: 1117-1129
  • 5 Rapp K, Cameron ID, Kurrle S. et al. Excess mortality after pelvic fractures in institutionalized older people. Osteoporos Int 2010; 21: 1835-1839
  • 6 Berghaus S, Muller D, Gandjour A. et al. Osteoporosis in German men: a cost-of-illness study. Expert Rev Pharmacoecon Outcomes Res 2015; 15: 531-537
  • 7 Nowossadeck. Demografische Alterung und Folgen für das Gesundheitswesen. Berlin: RKI; 2012
  • 8 Börjesson M, Hellenius ML, Jansson E. et al. Physical Activity in the Prevention and Treatment of Disease. Professional-Associations-for-Physical-Activity. editor. Stockholm: Swedish Institute of Health; 2010
  • 9 Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age 2011; 34: 1493-1515
  • 10 Sherrington C, Fairhall NJ, Wallbank GK. et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev 2019; 1: CD012424
  • 11 Groen BE, Weerdesteyn V, Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling. J Biomech 2007; 40: 458-462
  • 12 Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the sports and exercise scientist. Physician and Sportmedicine 2011; 39: 142-157
  • 13 Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol 2008; 18: 827-835
  • 14 Ashburn A, Fazakarley L, Ballinger C. et al. A randomised controlled trial of a home based exercise programme to reduce the risk of falling among people with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007; 78: 678-684
  • 15 Chan K, Qin L, Lau M. et al. A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch Phys Med Rehabil 2004; 85: 717-722
  • 16 Ebrahim SB, Thompson PW, Baskaran V. et al. Randomized placebo controlled trial of brisk walking in the prevention of postmenopausal osteoporosis. Age and Aging 1997; 26: 252-260
  • 17 Karinkanta S, Heinonen A, Sievanen H. et al. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int 2007; 18: 453-462
  • 18 Kemmler W, von Stengel S, Engelke K. et al. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 2010; 170: 179-185
  • 19 Kemmler W, von Stengel S, Bebenek M. et al. Exercise and fractures in postmenopausal women: 12-year results of the Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2012; 23: 1267-1276
  • 20 Korpelainen R, Keinanen-Kiukaanniemi S, Heikkinen J. et al. Effects of impact exercise on bone mineral density in elderly women with low BMD: a population based randomized controlled 30-month intervention. Osteoporos Int 2006; 17: 109-118
  • 21 McMurdo ME, Mole PA, Paterson CR. Controlled trial of weight bearing exercise in older women in relation to bone density and falls. BMJ 1997; 314: 569
  • 22 Preisinger E, Alacamlioglu Y, Pils K. et al. Exercise therapy for osteoporosis: results of a randomised controlled trial. Br J Sports Med 1996; 30: 209-212
  • 23 Robertson MC, Devlin N, Gardner MM. et al. Effectiveness and economic evaluation of a nurse delivered home exercise programme to prevent falls. 1: Randomised controlled trial. BMJ 2001; 322: 697-701
  • 24 Sinaki M, Itoi E, Wahner HW. et al. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone 2002; 30: 836-841
  • 25 Jansen JP, Bergman GJ, Huels J. et al. The efficacy of bisphosphonates in the prevention of vertebral, hip, and nonvertebral-nonhip fractures in osteoporosis: a network meta-analysis. Semin Arthritis Rheum 2011; 40: 275-284 e271-272
  • 26 Black DM, Delmas PD, Eastell R. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 2007; 356: 1809-1822
  • 27 McCloskey EV, Johansson H, Oden A. et al. Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res 2012; 27: 1480-1486
  • 28 Neer RM, Arnaud CD, Zanchetta JR. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344: 1434-1441
  • 29 Sterne JA, Sutton AJ, Ioannidis JP. et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011; 343: d4002
  • 30 Kemmler W, Stengel V. editors. The Role of Exercise on Fracture Reduction and Bone Strengthening. London: Avademic Press; 2019
  • 31 Jarvinen TL, Sievanen H, Khan KM. et al. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ 2008; 336: 124-126
  • 32 Costa AG, Wyman A, Siris ES. et al. When, where and how osteoporosis-associated fractures occur: an analysis from the Global Longitudinal Study of Osteoporosis in Women (GLOW). PLoS One 2013; 8: e83306
  • 33 Sambrook PN, Cameron ID, Chen JS. et al. Influence of fall related factors and bone strength on fracture risk in the frail elderly. Osteoporos Int 2007; 18: 603-610
  • 34 Freitas SS, Barrett-Connor E, Ensrud KE. et al. Rate and circumstances of clinical vertebral fractures in older men. Osteoporos Int 2008; 19: 615-623
  • 35 Kemmler W, Bebenek M, Kohl M. et al. Exercise and fractures in postmenopausal women. Final results of the controlled Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2015; 26: 2491-2499
  • 36 DVO. Prophylaxe, Diagnostik und Therapie der OSTEOPOROSE bei postmenopausalen Frauen und bei Männern Leitlinie_des_Dachverbands_der_Deutschsprachigen_Wissenschaftlichen_Osteologischen_Gesellschaften_e.V., editor. Stuttgart: Schattauer; 2017
  • 37 Kanis JA, McCloskey EV, Johansson H. et al. Development and use of FRAX in osteoporosis. Osteoporos Int 2010; 21: 407-413
  • 38 Schmitt NM, Schmitt J, Doren M. The role of physical activity in the prevention of osteoporosis in postmenopausal women-An update. Maturitas 2009; 63: 34-38
  • 39 Kemmler W, von Stengel S, Kohl M. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen Fitness and Osteoporosis Prevention Study. Bone 2016; 89: 1-6
  • 40 von Stengel S, Kemmler W, Lauber D. et al. Power Training is more Effective than Strength Training to Maintain Bone Mineral Density in Postmenopausal Woman. J Appl Physiol 2005; 99: 181-188
  • 41 Kemmler W, Lauber D, Weineck J. et al. Benefits of 2 years of intense exercise on bone density, physical fitness, and blood lipids in early postmenopausal osteopenic women: results of the Erlangen Fitness Osteoporosis Prevention Study (EFOPS). Arch Intern Med 2004; 164: 1084-1091
  • 42 Kemmler W, Lauber D, Von Stengel S. et al. Developing maximum strength in older adults – a series of studies. In: Gießing J, Fröhlich M, Preuss P. editors. Current results of strength training research. Göttingen: Cuvillier Verlag; 2005: 114-133
  • 43 Kemmler W, Lauber D, Mayhew D. et al. Predicting maximal strength in trained postmenopausal woman. J Strength Cond Res 2006; 20: 838-842
  • 44 Kemmler W, Lauber D, Weineck J. et al. Trainingssteuerung im Gesundheitssport. Lastvorgabe versus subjektive Intensitätswahl im präventivsportlichen Krafttraining. Dt Ztschr Sportmed 2005; 56: 165-170
  • 45 Saxon LK, Robling AG, Alam IM. et al. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 2005; 36: 454-464
  • 46 Kemmler WK, Lauber D, Wassermann A. et al. Predicting maximal strength in trained postmenopausal woman. J Strength Cond Res 2006; 20: 838-842
  • 47 Steele J, Fisher J, Giessing J. et al. Clarity in Reporting Terminology and Definitions of Set End Points in Resistance Training. Muscle Nerve 2017; 3: 368-374
  • 48 Kemmler W, Engelke K. Long-Term Exercise and Bone Mineral Density Changes in Postmenopausal Women – are there periods of reduced effectiveness?. J Bone Miner Res. 2015 accepted for publication
  • 49 Lamb SE, Jorstad-Stein EC, Hauer K. et al. Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus. J Am Geriatr Soc 2005; 53: 1618-1622
  • 50 Villareal DT, Steger-May K, Schechtman KB. et al. Effects of exercise training on bone mineral density in frail older women and men: A randomized controlled trial. Age and Aging 2004; 309-312
  • 51 Vincent KR, Braith RW. Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exerc 2002; 34: 17-23
  • 52 BAR. (Bundesarbeitsgemeinschaft für Rehabilitation) Rahmenvereinbarung über den Rehabilitationssport und das Funktionstraining vom 01. Oktober 2003, i. d. F. vom 01. Januar 2011. Frankfurt am Main: 2011
  • 53 Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports 2014; 24: 526-534
  • 54 Kemmler W, von Stengel S. Exercise frequency, health risk factors, and diseases of the elderly. Arch Phys Med Rehabil 2013; 94: 2046-2053
  • 55 Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37: 411-417
  • 56 Gianoudis J, Bailey CA, Ebeling PR. et al. Effects of a targeted multimodal exercise program incorporating high-speed power training on falls and fracture risk factors in older adults: a community-based randomized controlled trial. J Bone Miner Res 2014; 29: 182-191
  • 57 Mangione KK, Miller AH, Naughton IV. Cochrane review: Improving physical function and performance with progressive resistance strength training in older adults. Phys Ther 2010; 90: 1711-1715