Klinische Neurophysiologie 2019; 50(03): 125-136
DOI: 10.1055/a-0925-1719
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Hereditäre Polyneuropathien

Hereditary Polyneuropathies
A. Ferbert
,
C. Roth
Further Information

Publication History

Publication Date:
10 September 2019 (online)

Polyneuropathien zählen zu den häufigsten neurologischen Erkrankungen. Die Charcot-Marie-Tooth Erkrankung (CMT) ist ihre häufigste erblich bedingte Form. Orthopädische Symptome wie ein Hohlfuß oder Krallenzehen können ein erstes Anzeichen der Krankheit sein. Verdachtsfälle können mithilfe elektrophysiologischer und sonografischer Methoden abgeklärt und ggf. molekulargenetisch genau charakterisiert werden.

Abstract

Hereditary neuropathies are a group of diseases of which the most prevalent is Charcot Marie Tooth disease (CMT). From the clinical point of view pes cavus is a typical yet not specific sign for CMT. Motor signs like bilateral foot drop are dominant over sensory signs. Mutations in some 80 genes can lead to CMT. Whereas clinical sign can hardly differentiate between these genotypes, there is a clear differentiation by classical neurography: median nerve conduction velocity of less or more than 38 m/s differentiates between CMT type 1 and CMT type 2. The two most common forms are CMT1A induced by duplication of the PMP22 gene and hereditary neuropathy with liability to pressure palsy (HNPP) induced by deletion of the PMP22 gene.

 
  • Literatur

  • 1 Hanewinckel R, van Oijen M, Ikram MA. et al. The epidemiology and risk factors of chronic polyneuropathy. Eur J Epidemiol 2016; 31: 5-20
  • 2 Adams D, Gonzalez-Duarte A, O'Riordan WD. et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med 2018; 379: 11-21
  • 3 Benson MD, Waddington-Cruz M, Berk JL. et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med 2018; 379: 22-31
  • 4 Charcot JM, Marie P. Sur une forme particuliere d´atrophie musculaire progressive, souvent familiale, debutant par les pieds et les jambes et atteignant plus tard les mains. Revue de Medecine 1886; 6: 97-138
  • 5 Thomas PK, Calne DB, Stewart G. Hereditary motor and sensory polyneuropathy (peroneal muscular atrophy). Ann Hum Genet 1974; 38: 111-153
  • 6 Bonne G, Rivier F, Hamroun D. The 2018 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord 2017; 27: 1152-1183
  • 7 Irobi J, De Jonghe P, Timmerman V. Molecular genetics of distal hereditary motor neuropathies. Hum Mol Genet 2004; 13: R195-R202
  • 8 Braathen GJ. Genetic epidemiology of Charcot-Marie-Tooth disease. Acta Neurol Scand Suppl 2012; DOI: 10.1111/ane.12013. iv-22
  • 9 Bienfait HM, Faber CG, Baas F. et al. Late onset axonal Charcot-Marie-Tooth phenotype caused by a novel myelin protein zero mutation. J Neurol Neurosurg Psychiatry 2006; 77: 534-537
  • 10 Crosbie J, Burns J. Are in-shoe pressure characteristics in symptomatic idiopathic pes cavus related to the location of foot pain?. Gait Posture 2008; 27: 16-22
  • 11 Ferbert A, Zibat A, Rautenstrauss B. et al. Laing distal myopathy with a novel mutation in exon 34 of the MYH7 gene. Neuromuscul Disord 2016; 26: 598-603
  • 12 Gallardo E, Garcia A, Combarros O. et al. Charcot-Marie-Tooth disease type 1A duplication: spectrum of clinical and magnetic resonance imaging features in leg and foot muscles. Brain 2006; 129: 426-437
  • 13 Thomas PK, Marques Jr. W, Davis MB. et al. The phenotypic manifestations of chromosome 17p11.2 duplication. Brain 1997; 120 (Pt 3) 465-478
  • 14 Weiller C, Ferbert A. Hereditary motor and sensory neuropathy (HMSN) and optic atrophy (HMSN type VI, Vizioli). Eur Arch Psychiatry Clin Neurosci 1991; 240: 246-249
  • 15 Chung KW, Kim SB, Park KD. et al. Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 2006; 129: 2103-2118 Epub 2006 Jul 2110
  • 16 Charcot JM. Sur quelques arthropathies qui paraissent dependre d’une lesion du cerveau ou de la moelle epiniere. Arch Des Phys Norm et Pathol 1868; 1: 161
  • 17 Harding AE, Thomas PK. The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 1980; 103: 259-280
  • 18 Krajewski KM, Lewis RA, Fuerst DR. et al. Neurological dysfunction and axonal degeneration in Charcot-Marie-Tooth disease type 1A. Brain 2000; 123 (Pt 7) 1516-1527
  • 19 Aramideh M, Hoogendijk JE, Aalfs CM. et al. Somatosensory evoked potentials, sensory nerve potentials and sensory nerve conduction in hereditary motor and sensory neuropathy type I. J Neurol 1992; 239: 277-283
  • 20 Ferbert A, Wilken B, Roth C. Erbliche Polyneuropathien. Neurophysiol Lab 2007; 29: 49-69
  • 21 Fabrizi GM, Tamburin S, Cavallaro T. et al. The spectrum of Charcot-Marie-Tooth disease due to myelin protein zero: An electrodiagnostic, nerve ultrasound and histological study. Clin Neurophysiol 2018; 129: 21-32
  • 22 Loewenbruck KF, Dittrich M, Bohm J. et al. Practically applicable nerve ultrasound models for the diagnosis of axonal and demyelinating hereditary motor and sensory neuropathies (HMSN). J Neurol 2018; 265: 165-177
  • 23 Dyck PJ, Lambert EH. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol 1968; 18: 603-618
  • 24 Bacquet J, Stojkovic T, Boyer A. et al. Molecular diagnosis of inherited peripheral neuropathies by targeted next-generation sequencing: molecular spectrum delineation. BMJ Open 2018; 8: e021632
  • 25 Richards S, Aziz N, Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405-424
  • 26 Alirezaie N, Kernohan KD, Hartley T. et al. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants. Am J Hum Genet 2018; 103: 474-483
  • 27 Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. Am J Hum Genet 2017; 100: 267-280
  • 28 Safka Brozkova D, Deconinck T, Griffin LB. et al. Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies. Brain 2015; 138: 2161-2172
  • 29 Nam SH, Hong YB, Hyun YS. et al. Identification of Genetic Causes of Inherited Peripheral Neuropathies by Targeted Gene Panel Sequencing. Mol Cells 2016; 39: 382-388
  • 30 DiVincenzo C, Elzinga CD, Medeiros AC. et al. The allelic spectrum of Charcot-Marie-Tooth disease in over 17,000 individuals with neuropathy. Mol Genet Genomic Med 2014; 2: 522-529
  • 31 Marttila M, Kytovuori L, Helisalmi S. et al. Molecular Epidemiology of Charcot-Marie-Tooth Disease in Northern Ostrobothnia, Finland: A Population-Based Study. Neuroepidemiology 2017; 49: 34-39
  • 32 Dohrn MF, Glockle N, Mulahasanovic L. et al. Frequent genes in rare diseases: panel-based next generation sequencing to disclose causal mutations in hereditary neuropathies. J Neurochem 2017; 143: 507-522
  • 33 Drew AP, Zhu D, Kidambi A. et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015; 3: 143-154
  • 34 Hoyer H, Braathen GJ, Busk OL. et al. Genetic diagnosis of Charcot-Marie-Tooth disease in a population by next-generation sequencing. Biomed Res Int 2014; 2014: 210401
  • 35 Gess B, Baets J, De Jonghe P. et al. Ascorbic acid for the treatment of Charcot-Marie-Tooth disease. Cochrane Database Syst Rev 2015; DOI: 10.1002/14651858.CD011952:. CD011952
  • 36 Pareyson D, Reilly MM, Schenone A. et al. Ascorbic acid in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): a double-blind randomised trial. Lancet Neurol 2011; 10: 320-328
  • 37 Ortiz A, Germain DP, Desnick RJ. et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab 2018; 123: 416-427