Rofo 2019; 191(09): 817-826
DOI: 10.1055/a-0924-5883
Review
© Georg Thieme Verlag KG Stuttgart · New York

Cardiac Computed Tomography – More Than Coronary Arteries? A Clinical Update

Kardinale CT: Mehr als nur Koronarien? Ein Abgleich mit dem Alltag
Jana Taron
1   Cardiac MR PET CT Program, Massachusetts General-Hospital – Harvard Medical School, Boston, United States
2   Department of Diagnostic and Interventional Radiology, University-Hospital Tübingen, Germany
,
Borek Foldyna
1   Cardiac MR PET CT Program, Massachusetts General-Hospital – Harvard Medical School, Boston, United States
,
Parastou Eslami
1   Cardiac MR PET CT Program, Massachusetts General-Hospital – Harvard Medical School, Boston, United States
,
Udo Hoffmann
1   Cardiac MR PET CT Program, Massachusetts General-Hospital – Harvard Medical School, Boston, United States
,
Konstantin Nikolaou
2   Department of Diagnostic and Interventional Radiology, University-Hospital Tübingen, Germany
,
Fabian Bamberg
3   Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
› Author Affiliations
Further Information

Publication History

29 November 2018

06 May 2019

Publication Date:
27 June 2019 (online)

Abstract

Background Rapid improvement of scanner and postprocessing technology as well as the introduction of minimally invasive procedures requiring preoperative imaging have led to the broad utilization of cardiac computed tomography (CT) beyond coronary CT angiography (CTA).

Method This review article presents an overview of recent literature on cardiac CT. The goal is to summarize the current guidelines on performing cardiac CT and to list established as well as emerging techniques with a special focus on extracoronary applications.

Results and Conclusion Most recent guidelines for the appropriate use of cardiac CT include the evaluation of coronary artery disease, cardiac morphology, intra- and extracardiac structures, and functional and structural assessment of the myocardium under certain conditions. Besides coronary CTA, novel applications such as the calculation of a CT-derived fractional flow reserve (CT-FFR), assessment of myocardial function and perfusion imaging, as well as pre-interventional planning in valvular heart disease or prior pulmonary vein ablation in atrial fibrillation are becoming increasingly important. Especially these extracoronary applications are of growing interest in the field of cardiac CT and are expected to be gradually implemented in the daily clinical routine.

Key Points:

  • Coronary artery imaging remains the main indication for cardiac CT

  • Novel computational fluid dynamics allow the calculation of a CT-derived fractional flow reserve in patients with known or suspected coronary artery disease

  • Cardiac CT delivers information on left ventricular volume as well as myocardial function and perfusion

  • CT is the cardinal element for pre-interventional planning in transcatheter valve implantation and pulmonary vein isolation

Citation Format

  • Taron J, Foldyna B, Eslami P et al. Cardiac Computed Tomography – More Than Coronary Arteries? A Clinical Update. Fortschr Röntgenstr 2019; 191: 817 – 826

Zusammenfassung

Hintergrund Durch technischen Fortschritt und neue Entwicklungen sowie die verbreitete Anwendung minimalinvasiver Verfahren, welche einer prä-interventionellen Planung bedürfen, ist die kardiale Computertomografie (CT) zu einer weit verbreiteten und vielseitig angewendeten Methode geworden, die zunehmend über die traditionelle koronare CT-Angiografie (CTA) hinausreicht.

Methode Dieser Übersichtsartikel stellt eine Zusammenfassung der aktuellen Literatur zur kardialen Computertomografie dar. Ziel dieser Übersicht ist es, die derzeitigen Leitlinien aufzuführen sowie aktuelle Indikationen und neue Entwicklungen im Bereich der kardialen CT, insbesondere im Rahmen extrakoronarer Applikationen, zu beleuchten.

Ergebnisse und Schlussfolgerung Nach aktuellen Leitlinien ist die Durchführung der kardialen CT u. a. zur Evaluation koronarer Herzerkrankungen, zur Darstellung kardialer und extrakardialer Anatomie sowie – unter bestimmten Voraussetzungen – zur Funktionsanalyse indiziert. Neben der koronaren CTA ist es durch neue technische Entwicklungen möglich, CT-gestützt eine fraktionelle Flussreserve (CT-FFR) zu berechnen. Zudem ermöglicht die kardiale CT Funktions- und Perfusionsuntersuchungen des linksventrikulären Myokards sowie prä-interventionelle Bildgebung insbesondere im Rahmen von Herzklappenerkrankungen oder vor Pulmonalvenenisolation zur Behandlung von Vorhofflimmern. Insbesondere diese extrakoronaren Anwendungen sind von wachsendem Interesse im klinischen Alltag und eine zunehmende Nachfrage ist in nächster Zeit zu erwarten.

Kernaussagen:

  • Koronare Bildgebung ist weiterhin der Hauptbestandteil der kardialen CT.

  • Neue Techniken erlauben die CT-gestützte Berechnung von Flussdynamiken (CT-FFR).

  • Kardiale CT kann wichtige Informationen über das linksventrikuläre Volumen, Funktion und Perfusion liefern.

  • CT ist ein Kernelement für die prä-interventionelle Planung vor minimalinvasivem Katheter-gestütztem Herzklappenersatz sowie Pulmonalvenenisolation zur Behandlung von Vorhofflimmern.

 
  • References

  • 1 Townsend N, Nichols M, Scarborough P. et al. Cardiovascular disease in Europe – epidemiological update 2015. Eur Heart J 2015; 36: 2696-2705
  • 2 Registry CT. MR/CT-Registry in Europe 2017 … be a part of it !. 2017 DOI: https://www.mrct-registry.org/images/ESCR_2017_CardiacMRCTbooklet.pdf
  • 3 Hoffmann U, Truong QA, Schoenfeld DA. et al. Coronary CT Angiography versus Standard Evaluation in Acute Chest Pain. N Engl J Med [Internet] 2012; 367: 299-308 . doi:https://doi.org/10.1056/NEJMoa1201161
  • 4 Bittner DO, Ferencik M, Douglas PS. et al. Coronary CT Angiography as a Diagnostic and Prognostic Tool: Perspective from a Multicenter Randomized Controlled Trial: PROMISE. Curr Cardiol Rep [Internet] 2016; 18: 40 . doi:https://doi.org/10.1007/s11886-016-0718-9
  • 5 Cury RC, Nieman K, Shapiro MD. et al. Comprehensive Assessment of Myocardial Perfusion Defects, Regional Wall Motion, and Left Ventricular Function by Using 64-Section Multidetector CT. Radiology [Internet] 2008; 248: 466-475 . doi:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797649/
  • 6 Latsios G, Spyridopoulos TN, Toutouzas K. et al. Multi-slice CT (MSCT) imaging in pretrans-catheter aortic valve implantation (TAVI) screening. How to perform and how to interpret. Hell J Cardiol [Internet] 2018; 59: 3-7 . doi:http://www.sciencedirect.com/science/article/pii/S1109966617303998
  • 7 Natarajan N, Patel P, Bartel T. et al. Peri-procedural imaging for transcatheter mitral valve replacement. Cardiovasc Diagn Ther 2016; 6: 144-159
  • 8 Jongbloed MRM, Dirksen MS, Bax JJ. et al. Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation – initial experience. Radiology 2005; 234: 702-709
  • 9 Taylor AJ, Cerqueira M, Hodgson JM. et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the. J Am Coll Cardiol 2010; 56: 1864-1894
  • 10 Montalescot G, Sechtem U, Achenbach S. et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013; 34: 2949-3003
  • 11 Members TF, Montalescot G, Sechtem U. et al. 2013 ESC guidelines on the management of stable coronary artery diseaseThe Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J [Internet] 2013; 34: 2949-3003 . doi:http://dx.doi.org/10.1093/eurheartj/eht296
  • 12 Stillman AE, Oudkerk M, Ackerman M. et al. Use of multidetector computed tomography for the assessment of acute chest pain: a consensus statement of the North American Society of Cardiac Imaging and the European Society of Cardiac Radiology. Int J Cardiovasc Imaging 2007; 23: 415-427
  • 13 Holmes DR, Mack MJ, Kaul S. et al. 2012 ACCF/AATS/SCAI/STS Expert Consensus Document on Transcatheter Aortic Valve Replacement. J Am Coll Cardiol [Internet] 2012; 59 (13) 1200-1254 . doi:http://www.sciencedirect.com/science/article/pii/S0735109712000022
  • 14 Agatston AS, Janowitz WR, Hildner FJ. et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15: 827-832
  • 15 Grundy SM, Stone NJ, Bailey AL. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018; pii: S0735-1097(18)39033-8
  • 16 Nasir K, Bittencourt MS, Blaha MJ. et al. Implications of Coronary Artery Calcium Testing Among Statin Candidates According to American College of Cardiology/American Heart Association Cholesterol Management Guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2015; 66: 1657-1668
  • 17 Sun Z. Multislice CT angiography in cardiac imaging: prospective ECG-gating or retrospective ECG-gating?. Biomed Imaging Interv J [Internet] 2010; 6: e4 . doi:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097791/
  • 18 Halliburton SS, Abbara S, Chen MY. et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr [Internet] 2011; 5: 198-224 . doi:https://www.ncbi.nlm.nih.gov/pubmed/21723512
  • 19 Hosch W, Hofmann NP, Mueller D. et al. Body mass index-adapted prospective coronary computed tomography angiography. Determining the lowest limit for diagnostic purposes. Eur J Radiol [Internet] 2013; 82: e232-e239 . doi:http://10.0.3.248/j.ejrad.2012.12.013
  • 20 Fink C, Krissak R, Henzler T. et al. Radiation Dose at Coronary CT Angiography: Second-Generation Dual-Source CT Versus Single-Source 64-MDCT and First-Generation Dual-Source CT. Am J Roentgenol [Internet] 2011; 196: W550-W557 . doi:https://doi.org/10.2214/Am J Roentgenol.10.5153
  • 21 Einstein AJ, Moser KW, Thompson RC. et al. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007; 116: 1290-1305
  • 22 Bastarrika G, Lee YS, Huda W. et al. CT of coronary artery disease. Radiology 2009; 253: 317-338
  • 23 Litt HI, Gatsonis C, Snyder B. et al. CT Angiography for Safe Discharge of Patients with Possible Acute Coronary Syndromes. N Engl J Med [Internet] 2012; 366: 1393-1403 . doi:https://doi.org/10.1056/NEJMoa1201163
  • 24 Hoffmann U, Bamberg F, Chae CU. et al. Coronary Computed Tomography Angiography For Early Triage of Patients with Acute Chest Pain – The Rule Out Myocardial Infarction Using Computer Assisted Tomography (ROMICAT) Trial. J Am Coll Cardiol [Internet] 2009; 53: 1642-1650 . doi:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747766/
  • 25 Newby DE, Adamson PD, Berry C. et al. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N Engl J Med 2018; 379: 924-933
  • 26 Douglas PS, Hoffmann U, Patel MR. et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 2015; 372: 1291-1300
  • 27 CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet [Internet] 2015; 385: 2383-2391 . doi:https://doi.org/10.1016/S0140-6736(15)60291-4
  • 28 Rossi A, Papadopoulou SL, Pugliese F. et al. Quantitative computed tomographic coronary angiography: does it predict functionally significant coronary stenoses?. Circ Cardiovasc Imaging 2014; 7: 43-51
  • 29 Windecker S, Kolh P, Alfonso F. et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution o. Eur Heart J 2014; 35: 2541-2619
  • 30 Sarno G, Decraemer I, Vanhoenacker PK. et al. On the inappropriateness of noninvasive multidetector computed tomography coronary angiography to trigger coronary revascularization: a comparison with invasive angiography. JACC Cardiovasc Interv 2009; 2: 550-557
  • 31 Lu MT, Ferencik M, Roberts RS. et al. Noninvasive FFR Derived From Coronary CT Angiography: Management and Outcomes in the PROMISE Trial. JACC Cardiovasc Imaging 2017; 10: 1350-1358
  • 32 Nakanishi R, Budoff MJ. Noninvasive FFR derived from coronary CT angiography in the management of coronary artery disease: technology and clinical update. Vasc Health Risk Manag 2016; 12: 269-278
  • 33 Coenen A, Lubbers MM, Kurata A. et al. Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 2015; 274: 674-683
  • 34 Norgaard BL, Leipsic J, Gaur S. et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014; 63: 1145-1155
  • 35 Ko BS, Cameron JD, Munnur RK. et al. Noninvasive CT-Derived FFR Based on Structural and Fluid Analysis: A Comparison With Invasive FFR for Detection of Functionally Significant Stenosis. JACC Cardiovasc Imaging [Internet] 2017; 10: 663-673 . doi:http://www.sciencedirect.com/science/article/pii/S1936878X1630626X
  • 36 AHA 2016: Mortality rate with FFR-guided treatment of multivessel disease is unexpectedly high [Internet]. 2016 [cited 2019 Mar 1] DOI: https://cardiovascularnews.com/aha-2016-mortality-rate-with-ffr-guided-treatment-of-multivessel-disease-is-unexpectedly-high/
  • 37 George RT, Arbab-Zadeh A, Cerci RJ. et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study. Am J Roentgenol [Internet] 2011; 197: 829-837 . doi:https://www.ncbi.nlm.nih.gov/pubmed/21940569
  • 38 Mangla A, Oliveros E, Williams KA. et al. Cardiac Imaging in the Diagnosis of Coronary Artery Disease. Curr Probl Cardiol [Internet] 2017; 42: 316-366 . doi:http://www.sciencedirect.com/science/article/pii/S0146280617300725
  • 39 Hoffmann U, Ferencik M, Udelson JE. et al. Prognostic Value of Noninvasive Cardiovascular Testing in Patients With Stable Chest Pain: Insights From the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation 2017; 135: 2320-2332
  • 40 Varga-Szemes A, Meinel FG, De Cecco CN. et al. CT Myocardial Perfusion Imaging. Am J Roentgenol [Internet] 2015; 204: 487-497 . doi:https://doi.org/10.2214/Am J Roentgenol.14.13546
  • 41 Branch KR, Haley RD, Bittencourt MS. et al. Myocardial computed tomography perfusion. Cardiovasc Diagn Ther [Internet] 2017; 7: 452-462 . doi:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716942/
  • 42 Danad I, Ó-Hartaigh B, Min JK. Dual-energy computed tomography for detection of coronary artery disease. Expert Rev Cardiovasc Ther [Internet] 2015; 13: 1345-1356 . doi:https://www.ncbi.nlm.nih.gov/pubmed/26549789
  • 43 Bauer RW, Kerl JM, Fischer N. et al. Dual-Energy CT for the Assessment of Chronic Myocardial Infarction in Patients With Chronic Coronary Artery Disease: Comparison With 3-T MRI. Am J Roentgenol [Internet] 2010; 195: 639-646 . doi:https://doi.org/10.2214/Am J Roentgenol.09.3849
  • 44 Gudrun F, Robert G, André P. et al. Adenosine Stress High-Pitch 128-Slice Dual-Source Myocardial Computed Tomography Perfusion for Imaging of Reversible Myocardial Ischemia. Circ Cardiovasc Imaging [Internet] 2011; 4: 540-549 . doi:https://doi.org/10.1161/CIRCIMAGING.110.961250
  • 45 Siontis KC, Gersh BJ, Williamson EE. et al. Diagnostic Performance of Myocardial CT Perfusion Imaging With or Without Coronary CT Angiography. JACC Cardiovasc Imaging [Internet] 2016; 9: 322-324 . doi:http://www.sciencedirect.com/science/article/pii/S1936878X15002570
  • 46 Rochitte CE, George RT, Chen MY. et al. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J 2014; 35: 1120-1130
  • 47 Osawa K, Miyoshi T, Koyama Y. et al. Additional diagnostic value of first-pass myocardial perfusion imaging without stress when combined with 64-row detector coronary CT angiography in patients with coronary artery disease. Heart 2014; 100: 1008-1015
  • 48 Wang R, Yu W, Wang Y. et al. Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging 2011; 27: 647-656
  • 49 Ruzsics B, Schwarz F, Schoepf UJ. et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 2009; 104: 318-326
  • 50 Blankstein R, Shturman LD, Rogers IS. et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 2009; 54: 1072-1084
  • 51 So A, Hsieh J, Narayanan S. et al. Dual-energy CT and its potential use for quantitative myocardial CT perfusion. J Cardiovasc Comput Tomogr 2012; 6: 308-317
  • 52 Lardo AC, Cordeiro MA, Silva C. et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 2006; 113: 394-404 . doi:https://doi.org/10.1161/CIRCULATIONAHA.105.521450
  • 53 Kehr E, Sono M, Chugh SS. et al. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int J Cardiovasc Imaging [Internet] 2008; 24: 61-68 . doi:https://doi.org/10.1007/s10554-007-9223-y
  • 54 Nacif MS, Kawel N, Lee JJ. et al. Interstitial Myocardial Fibrosis Assessed as Extracellular Volume Fraction with Low-Radiation-Dose Cardiac CT. Radiology [Internet] 2012; 264: 876-883 . doi:https://doi.org/10.1148/radiol.12112458
  • 55 Lee HJ, Im DJ, Youn JC. et al. Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging. Radiology 2016; 280: 49-57
  • 56 Treibel TA, Fontana M, Steeden JA. et al. Automatic quantification of the myocardial extracellular volume by cardiac computed tomography: Synthetic ECV by CCT. J Cardiovasc Comput Tomogr 2017; 11: 221-226
  • 57 Amano Y, Takayama M, Kumita S. Contrast-enhanced myocardial T1-weighted scout (Look-Locker) imaging for the detection of myocardial damages in hypertrophic cardiomyopathy. J Magn Reson Imaging 2009; 30: 778-784
  • 58 Han Y, Peters DC, Dokhan B. et al. Shorter difference between myocardium and blood optimal inversion time suggests diffuse fibrosis in dilated cardiomyopathy. J Magn Reson Imaging [Internet] 2009; 30: 967-972 . doi:https://doi.org/10.1002/jmri.21953
  • 59 Palazzuoli A, Cademartiri F, Geleijnse ML. et al. Left ventricular remodelling and systolic function measurement with 64 multi-slice computed tomography versus second harmonic echocardiography in patients with coronary artery disease: a double blind study. Eur J Radiol 2010; 73: 82-88
  • 60 Lewis MA, Pascoal A, Keevil SF. et al. Selecting a CT scanner for cardiac imaging: the heart of the matter. Br J Radiol [Internet] 2016; 89: 20160376 . doi:https://www.ncbi.nlm.nih.gov/pubmed/27302494
  • 61 Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT?. J Cardiovasc Comput Tomogr [Internet] 2009; 3: 403-408 . doi:https://www.ncbi.nlm.nih.gov/pubmed/19717355
  • 62 Seneviratne SK, Truong QA, Bamberg F. et al. Incremental diagnostic value of regional left ventricular function over coronary assessment by cardiac computed tomography for the detection of acute coronary syndrome in patients with acute chest pain: from the ROMICAT trial. Circ Cardiovasc Imaging 2010; 3: 375-383
  • 63 Bauters C, Deneve M, Tricot O. et al. Prognosis of Patients With Stable Coronary Artery Disease (from the CORONOR Study). Am J Cardiol [Internet] 2014; 113: 1142-1145 . doi:https://doi.org/10.1016/j.amjcard.2013.12.019
  • 64 Gopalan D. Right heart on multidetector CT. Br J Radiol 2011; 84: S306-S323
  • 65 Guo Y, Gao H, Zhang X. et al. Accuracy and reproducibility of assessing right ventricular function with 64-section multi-detector row CT: comparison with magnetic resonance imaging. Int J Cardiol 2010; 139: 254-262
  • 66 Tee M, Noble JA, Bluemke DA. Imaging techniques for cardiac strain and deformation: comparison of echocardiography, cardiac magnetic resonance and cardiac computed tomography. Expert Rev Cardiovasc Ther 2013; 11: 221-231
  • 67 Tee MW, Won S, Raman FS. et al. Regional Strain Analysis with Multidetector CT in a Swine Cardiomyopathy Model: Relationship to Cardiac MR Tagging and Myocardial Fibrosis. Radiology [Internet] 2015; 277: 88-94 . doi:https://doi.org/10.1148/radiol.2015142339
  • 68 Eggebrecht H, Mehta RH. Transcatheter aortic valve implantation (TAVI) in Germany 2008–2014: on its way to standard therapy for aortic valve stenosis in the elderly?. EuroIntervention J Eur Collab with Work Gr Interv Cardiol Eur Soc Cardiol 2016; 11: 1029-1033
  • 69 Lehmkuhl L, Foldyna B, Von Aspern K. et al. Inter-individual variance and cardiac cycle dependency of aortic root dimensions and shape as assessed by ECG-gated multi-slice computed tomography in patients with severe aortic stenosis prior to transcatheter aortic valve implantation: is it crucial for. Int J Cardiovasc Imaging [Internet] 2013; 29: 693-703 . doi:https://doi.org/10.1007/s10554-012-0123-4
  • 70 Hell MM, Biburger L, Marwan M. et al. Prediction of fluoroscopic angulations for transcatheter aortic valve implantation by CT angiography: influence on procedural parameters. Eur Heart J Cardiovasc Imaging 2017; 18: 906-914
  • 71 Bolling SF, Pagani FD, Deeb GM. et al. Intermediate-term outcome of mitral reconstruction in cardiomyopathy. J Thorac Cardiovasc Surg 1998; 115: 381-388
  • 72 Grasso C, Capodanno D, Tamburino C. et al. Current status and clinical development of transcatheter approaches for severe mitral regurgitation. Circ J 2015; 79: 1164-1171
  • 73 Achenbach S, Delgado V, Hausleiter J. et al. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr [Internet] 2012; 6: 366-380 . doi:http://www.sciencedirect.com/science/article/pii/S1934592512003656
  • 74 von Aspern K, Foldyna B, Etz CD. et al. Effective diameter of the aortic annulus prior to transcatheter aortic valve implantation: influence of area-based versus perimeter-based calculation. Int J Cardiovasc Imaging 2015; 31: 163-169
  • 75 Zoni-Berisso M, Lercari F, Carazza T. et al. Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol 2014; 6: 213-220
  • 76 Lacomis JM, Wigginton W, Fuhrman C. et al. Multi–Detector Row CT of the Left Atrium and Pulmonary Veins before Radio-frequency Catheter Ablation for Atrial Fibrillation. RadioGraphics [Internet] 2003; 23 (Suppl. 01) S35-S48 . doi:https://doi.org/10.1148/rg.23si035508