Nuklearmedizin 2019; 58(03): 228-241
DOI: 10.1055/a-0891-1839
Guidelines
© Georg Thieme Verlag KG Stuttgart · New York

Verfahrensanweisung für die Iod-131 Ganzkörperszintigrafie beim differenzierten Schilddrüsenkarzinom (Version 5)

Procedural guideline for Iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma (version 5)
Frederik A. Verburg
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
2   Klinik für Nuklearmedizin des Universitätsklinikums Marburg
,
Matthias Schmidt
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
3   Klinik und Poliklinik für Nuklearmedizin, Uniklinik Köln
,
Michael C. Kreissl
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
4   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg
,
Frank Grünwald
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
5   Klinik und Poliklinik für Nuklearmedizin der Universität Frankfurt
,
Michael Lassmann
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
6   Klinik und Poliklinik für Nuklearmedizin der Universität Würzburg
,
Heribert Hänscheid
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
6   Klinik und Poliklinik für Nuklearmedizin der Universität Würzburg
,
Melanie Hohberg
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
3   Klinik und Poliklinik für Nuklearmedizin, Uniklinik Köln
,
Markus Luster
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
7   Universitätsklinikum Gießen und Marburg, Standort Marburg, Klinik für Nuklearmedizin
,
Markus Dietlein
1   für die Deutsche Gesellschaft für Nuklearmedizin (DGN)
3   Klinik und Poliklinik für Nuklearmedizin, Uniklinik Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
29 April 2019 (online)

Zusammenfassung

Die Version 5 der Verfahrensanweisung für die Iod-131 Ganzkörperszintigrafie beim differenzierten Schilddrüsenkarzinom ist ein Update der Version 4, publiziert durch die Deutsche Gesellschaft für Nuklearmedizin (DGN). Diese Verfahrensanweisung beschreibt mit primärer Zielsetzung die fachgerechte Durchführung der Ganzkörperszintigrafie nach Applikation einer diagnostischen bzw. einer therapeutischen I-131 Aktivität. Die Verfahrensanweisung wurde von einer repräsentativen Expertengruppe im Konsensverfahren verabschiedet. Sie entspricht damit einer Verfahrensanweisung der ersten Stufe (S1) nach den Kriterien der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF).

Abstract

Version 5 of the procedural guideline for Iodine-131 whole-body scintigraphy (WBS) in differentiated thyroid carcinoma is an update of the version 4, published by the “Deutsche Gesellschaft für Nuklearmedizin” (DGN). This procedural guideline advises on how to best perform I-131 whole body scintigraphy after I-131 therapy or after application of a diagnostic I-131 activity. A representative expert group has discussed and reached consensus on the procedural guideline; the development of this procedural guideline therefore fulfils the criteria for level S1 (first step) within the classification of the German Workgroup of Scientific Medical Societies (“Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften”; AWMF).

 
  • Literatur

  • 1 Bachelot A, Leboulleux S, Baudin E. et al. Neck recurrence from thyroid carcinoma: serum thyroglobulin and high-dose total body scan are not reliable criteria for cure after radioiodine treatment. Clin Endocrinol (Oxf) 2005; 62: 376-379
  • 2 Bakheet SM, Hammami MM. Patterns of radioiodine uptake by the lactating breast. Eur J Nucl Med 1994; 21: 604-608
  • 3 Cailleux AF, Baudin E, Travagli JP. et al. Is diagnostic iodine-131 scanning useful after total thyroid ablation for differentiated thyroid cancer?. J Clin Endocrinol Metab 2000; 85: 175-178
  • 4 Campennì A, Giovanella L, Pignata SA. et al. Undetectable or low (< 1 ng/ml) postsurgical thyroglobulin values do not rule out metastases in early stage differentiated thyroid cancer patients. Oncotarget 2018; 9 (25) 17491-17500
  • 5 Castro MR, Bergert ER, Goellner JR. et al. Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake. J Clin Endocrinol Metab 2001; 86: 5627-5632
  • 6 Chen MK, Yasrebi M, Samii J. et al. The utility of I-123 pretherapy scan in I-131 radioiodine therapy for thyroid cancer. Thyroid 2012; 22 (03) 304-309
  • 7 Chen L, Luo Q, Shen Y. et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med 2008; 49 (12) 1952-1957
  • 8 Chiovato L, Latrofa F, Braverman LE. et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med 2003; 139: 346-351
  • 9 Chung JK, Park YJ, Kim TY. et al. Clinical significance of elevated level of serum antithyroglobulin antibody in patients with differentiated thyroid cancer after thyroid ablation. Clin Endocrinol (Oxf) 2002; 57: 215-221
  • 10 de Meer SG, Vriens MR, Zelissen PM. et al. The role of routine diagnostic radioiodine whole-body scintigraphy in patients with high-risk differentiated thyroid cancer. J Nucl Med 2011; 52: 56-59
  • 11 de Pont C, Halders S, Bucerius J. et al. (124)I PET/CT in the pretherapeutic staging of differentiated thyroid carcinoma: comparison with posttherapy (131)I SPECT/CT. Eur J Nucl Med Mol Imaging 2013; 40: 693-700
  • 12 Dewaraja YK, Ljungberg M, Green AJ. et al. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med 2013; 54: 2182-2188
  • 13 Diessl S, Verburg F, Biko J. et al. Improved follow-up of patients with differentiated thyroid carcinoma. The quantitative detection limit of 131I uptake in diagnostic scans. Nuklearmedizin 2013; 52: 81-87
  • 14 Dietlein M, Scheidhauer K, Voth E. et al. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997; 24: 1342-1348
  • 15 Dietlein M, Eschner W, Grünwald F. et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 4). [German]. Nuklearmedizin 2016; 55: 77-89
  • 16 DIN 6855–2 Konstanzprüfung von Einkristall-Gammakameras zur planaren Szintigraphie und zur Einzelphotonen-Emissions-Tomographie mit Hilfe rotierender Messköpfe. 2013 Im Internet: https://dx.doi.org/10.31030/1916487
  • 17 Feine U, Lietzenmayer R, Hanke JP. et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996; 37: 1468-1472
  • 18 Feine U, Lietzenmayer R, Hanke JP. et al. [18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I]. Nuklearmedizin 1995; 34: 127-134
  • 19 Freudenberg LS, Frilling A, Kuhl H. et al. Dual-modality FDG-PET/CT in follow-up of patients with recurrent iodine-negative differentiated thyroid cancer. Eur Radiol 2007; 17: 3139-3147
  • 20 Freudenberg LS, Jentzen W, Görges R. et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin 2007; 46 (04) 121-128
  • 21 Gerard SK, Cavalieri RR. I-123 diagnostic thyroid tumor whole-body scanning with imaging at 6, 24, and 48 hours. Clin Nucl Med 2002; 27: 1-8
  • 22 Geworski L, Lottes G, Reiners C. et al. Empfehlungen zur Qualitätskontrolle in der Nuklearmedizin. Stuttgart: Schattauer; 2009
  • 23 Giovanella L, Ceriani L, De Palma D. et al. Relationship between serum thyroglobulin and 18FDG-PET/CT in 131I-negative differentiated thyroid carcinomas. Head Neck 2012; 34: 626-631
  • 24 Giovanella L, Suriano S, Ricci R. et al. Postsurgical thyroid remnant estimation by 99mTc-pertechnetate scintigraphy predicts radioiodine ablation effectiveness in patients with differentiated thyroid carcinoma. Head Neck 2011; 33 (04) 552-556
  • 25 Giovanella L, Treglia G, Ceriani L. et al. Detectable thyroglobulin with negative imaging in differentiated thyroid cancer patients. What to do with negative anatomical imaging and radioiodine scan?. Nuklearmedizin 2014; 53: 1-10
  • 26 Giovanella L, Treglia G, Sadeghi R. et al. Unstimulated highly sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab 2014; 99: 440-447
  • 27 Giovanella L, Trimboli P, Verburg FA. et al. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive (18)F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2013; 40: 874-880
  • 28 Giovanella L, Clark PM, Chiovato L. et al. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol 2014; 171 (02) R33-46
  • 29 Gotthardt M, Stubinger M, Pansegrau J. et al. Decrease of (99 m)Tc-uptake in autonomous thyroid tissue in Germany since the 1970s. Clinical implications for radioiodine therapy. Nuklearmedizin 2006; 45: 122-125
  • 30 Haenscheid H, Lassmann M, Buck AK. et al. The limit of detection in scintigraphic imaging with I-131 in patients with differentiated thyroid carcinoma. Phys Med Biol 2014; 59: 2353-2368
  • 31 Hammami MM, Bakheet S. Radioiodine breast uptake in nonbreastfeeding women: clinical and scintigraphic characteristics. J Nucl Med 1996; 37 (01) 26-31
  • 32 Haugen BR, Alexander EK, Bible KC. et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2016; 26: 1-133
  • 33 Helal BO, Merlet P, Toubert ME. et al. Clinical impact of (18)F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J Nucl Med 2001; 42: 1464-1469
  • 34 Hilditch TE, Dempsey MF, Bolster AA. et al. Self-stunning in thyroid ablation: evidence from comparative studies of diagnostic (131)I and (123)I. Eur J Nucl Med Mol Imaging 2002; 29: 783-788
  • 35 Hung BT, Huang SH, Huang YE. et al. Appropriate time for post-therapeutic I-131 whole body scan. Clin Nucl Med 2009; 34: 339-342
  • 36 Iacobone M, Jansson S, Barczyński M. et al. Multifocal papillary thyroid carcinoma – a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbeck’s Archives of Surgery 2014; 399 (02) 141-154
  • 37 Isoda T, Baba S, Maruoka Y. et al. Impact of patient age on the iodine/FDG “flip-flop” phenomenon in lung metastasis from thyroid cancer. Ann Nucl Med 2016; 30: 518-24
  • 38 Jentzen W, Freudenberg L, Eising E. et al. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2008; 49: 1017-1023
  • 39 Kelders A, Kennes LN, Krohn T. et al. Relationship between positive thyroglobulin doubling time and 18F-FDG PET/CT-positive, 131I-negative lesions. Nucl Med Commun 2014; 35: 176-181
  • 40 Kim TY, Kim WB, Kim ES. et al. Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 2005; 90: 1440-1445
  • 41 Kim WG, Yoon JH, Kim WB. et al. Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin-negative patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 2008; 93: 4683-4689
  • 42 Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F. et al. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 2011; 96: 3217-3225
  • 43 Kramer JA, Schmid KW, Dralle H. et al. Primary tumour size is a prognostic parameter in patients suffering from differentiated thyroid carcinoma with extrathyroidal growth: results of the MSDS trial. Eur J Endocrinol 2010; 163: 637-644
  • 44 Larson SM, Robbins R. Positron emission tomography in thyroid cancer management. Semin Roentgenol 2002; 37: 169-174
  • 45 Lassmann M, Haenscheid H, Chiesa C. et al. EANM dosimetry committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 2008; 35: 1405-1412
  • 46 Lassmann M, Luster M, Haenscheid H. et al. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 2004; 45: 619-625
  • 47 Lee JW, Lee SM, Koh GP. et al. The comparison of (131)I whole-body scans on the third and tenth day after (131)I therapy in patients with well-differentiated thyroid cancer: preliminary report. Ann Nucl Med 2011; 25: 439-446
  • 48 Lloyd RV, Osamura RY, Klöppel G. et al. WHO Classification of Tumours of Endocrine Organs. Fourth Edition. Volume 10. International Agency for Research on Cancer (IARC), World Health Organization (WHO). 2017 www.iarc.fr
  • 49 Loeffler M, Weckesser M, Franzius C. et al. Iodine excretion during stimulation with rhTSH in differentiated thyroid carcinoma. Nuklearmedizin 2003; 42: 240-243
  • 50 Lundh C, Lindencrona U, Postgard P. et al. Radiation-induced thyroid stunning: differential effects of (123)I, (131)I, (99 m)Tc, and (211)At on iodide transport and NIS mRNA expression in cultured thyroid cells. J Nucl Med 2009; 50: 1161-1167
  • 51 Luster M, Clarke SE, Dietlein M. et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35: 1941-1959
  • 52 Mallick U, Harmer C, Yap B. et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med 2012; 366: 1674-1685
  • 53 Mazzaferri EL, Robbins RJ, Braverman LE. Authors’ response: a consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 2003; 88: 4508-4509
  • 54 Mishra A, Pradhan PK, Gambhir S. et al. Preoperative contrast-enhanced computerized tomography should not delay radioiodine ablation in differentiated thyroid carcinoma patients. J Surg Res 2015; 193 (02) 731-737
  • 55 Mustafa M, Kuwert T, Weber K. et al. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. Eur J Nucl Med Mol Imaging 2010; 37: 1462-1466
  • 56 Nemec J, Rohling S, Zamrazil V. et al. Comparison of the distribution of diagnostic and thyroablative I-131 in the evaluation of differentiated thyroid cancers. J Nucl Med 1979; 20: 92-97
  • 57 Netzwerk Onkologische Spitzenzentren. Netzwerk-SOP differenziertes Schilddrüsenkarzinom, Diagnose, Therapie und Nachsorge, Version 1.0. Im Internet: www.ccc-netzwerk.de/netzwerk-sops Stand: 15.10.2018
  • 58 Pacini F, Capezzone M, Elisei R. et al. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum tg levels after initial treatment. J Clin Endocrinol Metab 2002; 87: 1499-1501
  • 59 Pacini F, Mariotti S, Formica N. et al. Thyroid autoantibodies in thyroid cancer: incidence and relationship with tumour outcome. Acta Endocrinol (Copenh) 1988; 119: 373-380
  • 60 Pacini F, Schlumberger M, Dralle H. et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006; 154: 787-803
  • 61 Padovani RP, Kasamatsu TS, Nakabashi CC. et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid 2012; 22 (09) 926-930
  • 62 Perros P, Colley S, Boelart K. et al. British Thyroid Association guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf) 2014; 81 (Suppl. 01) 1-122
  • 63 Phan TT, van Tol KM, Links TP. et al. Diagnostic I-131 scintigraphy in patients with differentiated thyroid cancer: no additional value of higher scan dose. Ann Nucl Med 2004; 18: 641-646
  • 64 Pineda JD, Lee T, Ain K. et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab 1995; 80: 1488-1492
  • 65 Riemann B, Kramer JA, Schmid KW. et al. Risk stratification of patients with locally aggressive differentiated thyroid cancer. Results of the MSDS trial. Nuklearmedizin 2010; 49: 79-84
  • 66 Riemann B, Uhrhan K, Dietlein M. et al. Diagnostic value and therapeutic impact of 18F-FDG-PET/CT in differentiated thyroid cancer. Results of a German multicentre study. Nuklearmedizin 2013; 52: 1-6
  • 67 Robbins RJ, Chon JT, Fleisher M. et al. Is the serum thyroglobulin response to recombinant human thyrotropin sufficient, by itself, to monitor for residual thyroid carcinoma?. J Clin Endocrinol Metab 2002; 87: 3242-3247
  • 68 Robbins RJ, Wan Q, Grewal RK. et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18 F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006; 91: 498-505
  • 69 Salvatori M, Rufini V, Reale F. et al. Radio-guided surgery for lymph node recurrences of differentiated thyroid cancer. World J Surg 2003; 27: 770-775
  • 70 Schlumberger M, Berg G, Cohen O. et al. Follow-up of low-risk patients with differentiated thyroid carcinoma: a European perspective. Eur J Endocrinol 2004; 150: 105-112
  • 71 Schlumberger M, Catargi B, Borget I. et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med 2012; 366: 1663-1673
  • 72 Schmidt D, Szikszai A, Linke R. et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med 2009; 50 (01) 18-23
  • 73 Shattuck TM, Westra WH, Ladenson PW. et al. Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N Engl J Med 2005; 352 (23) 2406-2412
  • 74 Siddiqi A, Foley RR, Britton KE. et al. The role of 123I-diagnostic imaging in the follow-up of patients with differentiated thyroid carcinoma as compared to 131I-scanning: avoidance of negative therapeutic uptake due to stunning. Clin Endocrinol (Oxf) 2001; 55: 515-521
  • 75 Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 7th ed.. New-York: Wiley-Blackwell; 2009
  • 76 Sohn SY, Choi JH, Kim NK. et al. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid 2014; 24: 872-877
  • 77 Spanu A, Solinas ME, Chessa F. et al. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med 2009; 50 (02) 184-190
  • 78 Spanu A, Nuvoli S, Gelo I. et al. Role of Diagnostic 131I SPECT/CT in Long-Term Follow-up of Patients with Papillary Thyroid Microcarcinoma. J Nucl Med 2018; 59 (10) 1510-1515
  • 79 Spencer CA. Clinical review: Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab 2011; 96: 3615-3627
  • 80 Strahlenschutz in der Medizin – Richtlinie zur Strahlenschutzverordnung (StrlSchV) vom 26. 05.2011 (GMBl 2011, Nr. 44–47, S. 867), zuletzt geändert durch RdSchr. d. BMUB v. 11.07.2014 (GMBl. 2014, Nr.49, S. 1020). Im Internet: https://www.bmu.de/gesetz/richtlinie-zur-strahlenschutzverordnung
  • 81 Strahlenschutzgesetz (StrlSchG) – Gesetz zum Schutz vor der schädlichen Wirkung ionisierender Strahlung, zuletzt geändert durch Artikel 2 des Gesetzes vom 27.06.2017 (BGBl. I S. 1966). Im Internet: www.gesetze-im-internet.de/strlschg Stand 15.10.2018
  • 82 Strahlenschutzkommission. Notwendigkeit der stationären Durchführung der Ganzkörperszintigraphie mit I-131 beim Schilddrüsenkarzinom. Empfehlung der Strahlenschutzkommission. Verabschiedet in der 190. Sitzung der SSK am 22./23. April 2004. Bundesanzeiger 2004. im Internet: https://www.bundesanzeiger.de/ebanzwww/
  • 83 Strahlenschutzkommission. Qualitätskontrolle von nuklearmedizinischen Geräten – Festlegung von Reaktionsschwellen und Toleranzgrenzen. Verabschiedet in der 243. Sitzung der Strahlschutzkommission am 16./17. September 2010. 2010 im Internet: https://www.bundesanzeiger.de/ebanzwww/
  • 84 Sugg SL, Ezzat S, Rosen IB. et al. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab 1998; 83 (11) 4116-4122
  • 85 Szujo S, Sira L, Bajnok L. The impact of post-radioiodine therapy SPECT/CT on early risk stratification in differentiated thyroid cancer; a bi-institutional study. Oncotarget 2017; 8 (45) 79825-79834
  • 86 Thies ED, Tanase K, Maeder U. et al. The number of 131I therapy courses needed to achieve complete remission is an indicator of prognosis in patients with differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2014; 41: 2281-2290
  • 87 Torlontano M, Crocetti U, D’Aloiso L. et al. Serum thyroglobulin and 131I whole body scan after recombinant human TSH stimulation in the follow-up of low-risk patients with differentiated thyroid cancer. Eur J Endocrinol 2003; 148: 19-24
  • 88 Tuttle RM, Tala H, Shah J. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010; 20: 1341-1349
  • 89 Tuttle RM, Haugen B, Perrier ND. Updated American Joint Committee on Cancer/Tumor – Node – Metastasis staging system for differentiated and anaplastic thyroid cancer (eighth edition): what changed and why?. Thyroid 2017; 27 (06) 751-756
  • 90 Van Nostrand D, Khorjekar GR, O’Neil J. et al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole-body imaging and 124I PET. J Nucl Med 2012; 53 (03) 359-362
  • 91 Van Nostrand D. Selected Controversies of Radioiodine Imaging and Therapy in Differentiated Thyroid Cancer. Endocrinol Metab Clin North Am 2017; 46 (03) 783-793
  • 92 Verburg FA, de Keizer B, Lips CJ. et al. Prognostic significance of successful ablation with radioiodine of differentiated thyroid cancer patients. Eur J Endocrinol 2005; 152: 33-37
  • 93 Verburg FA, Haenscheid H, Biko J. et al. Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging 2010; 37: 896-903
  • 94 Verburg FA, Luster M, Cupini C. et al. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position paper. Thyroid 2013; 23: 1211-1225
  • 95 Verburg FA, Stokkel MP, Duren C. et al. No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010; 37: 276-283
  • 96 Verburg FA, Verkooijen RB, Stokkel MP. et al. The success of 131I ablation in thyroid cancer patients is significantly reduced after a diagnostic activity of 40 MBq 131I. Nuklearmedizin 2009; 48: 138-142
  • 97 Vrachimis A, Riemann B, Mäder U. et al. Endogenous TSH levels at the time of 131I ablation do not influence ablation success, recurrence-free survival or differentiated thyroid cancer-related mortality. Eur J Nucl Med Mol Imaging. 2015 [Epub ahead of print] DOI: 10.1007/s00259–015–3223–2
  • 98 Winter M, Winter J, Heinzel A. et al. Timing of post 131I ablation diagnostic whole body scan in differentiated thyroid cancer patients. Less than four months post ablation may be too early. Nuklearmedizin 2015; 54: 151-157
  • 99 Yap BK, Murby B. No adverse effect in clinical outcome using low preablation diagnostic 131I activity in differentiated thyroid cancer: refuting thyroid-stunning effect. J Clin Endocrinol Metab 2014; 99 (07) 2433-2440
  • 100 Youngwirth LM, Adam MA, Scheri RP. et al. Extrathyroidal Extension Is Associated with Compromised Survival in Patients with Thyroid Cancer. Thyroid 2017; 27 (05) 626-631