Z Orthop Unfall 2020; 158(03): 304-317
DOI: 10.1055/a-0873-1557
Review/Übersicht

Movement Analysis in Orthopedics and Trauma Surgery – Measurement Systems and Clinical Applications

Artikel in mehreren Sprachen: English | deutsch
Konrad Oppelt
1   Abteilung für Berufsgenossenschaftliche Rehabilitation und Heilverfahrenssteuerung, BG Unfallklinik Ludwigshafen
,
Aidan Hogan
2   Klinik für Unfallchirurgie und Orthopädie, BG Unfallklinik Ludwigshafen
,
Felix Stief
3   Bewegungsanalyse und Biomechanik, Orthopädische Universitätsklinik Friedrichsheim gGmbH, Frankfurt am Main
,
Paul Alfred Grützner
2   Klinik für Unfallchirurgie und Orthopädie, BG Unfallklinik Ludwigshafen
,
Ursula Trinler
2   Klinik für Unfallchirurgie und Orthopädie, BG Unfallklinik Ludwigshafen
› Institutsangaben

Abstract

Background Technical development lead to an enhancement of clinical movement analysis in the last few decades and expanded its research and clinical applications. Since the mid 20th century, human movement analysis has made its way into clinical practice, e.g. in treating poliomyelitis and infantile cerebral palsy. Today, it has a wide range of applications in various clinical areas. The aim of this narrative review is to illustrate the variety of camera-based systems for human movement analysis and their clinical applications, specifically in the field of orthopaedics and trauma surgery (O/U). Benefits and limitations of each system are shown. Future development and necessary improvements are discussed.

Material and Methods A selective literature review was undertaken with the databases PubMed and Google Scholar using keywords related to clinical human movement analysis in the field of orthopaedics and trauma surgery. Furthermore standard book references were included.

Results Common video camera systems (VS) are used for basic visual movement analysis. Instrumented movement analysis systems include marker-based systems (MBS), markerless optical systems (MLS) and rasterstereographic analysis systems (VRS). VS, MBS and MLS have clinical use for dynamic examination of patients with various disorders in movement and gait. Among such are e.g. neuro-orthopaedic disorders, muscular insufficiencies, degenerative and post-trauma deficiencies with e.g. resultant pathologic leg axis. Besides the measurement of kinematic data by MBS and MLS, the combination with kinetic measurements to detect abnormal loading patterns as well as the combination with electromyography (EMG) to detect abnormal muscle function is a great advantage. Validity and reliability of kinematic measurements depend on the camera systems (MBS, MLS), the applied marker models, the joints of interest and the observed movement plane. Movements in the sagittal plane of the hip and knee joint, pelvic rotation and tilt as well as hip abduction are generally measured with high reliability. In the frontal and transverse planes of the knee and ankle joint substantial angular variabilities were noted due to the small range of motion of the joints in these planes. Soft tissue artefacts and marker placement are the biggest sources of errors. So far MLS did not improve these limitations. MBS are most accurate and remain the gold-standard in clinical and scientific movement analysis. VRS is used clinically for static 3D-analysis of the trunk posture and spine deformities. Current systems allow the dynamic measurement and visualisation of trunk and spine movement in 3D during gait and running. Planar x-ray-imaging (Cobbʼs angle) and to some extent cross sectional imaging with CT-scan or MRI are commonly used for the evaluation of patients with spinal deformities. VRS offers functional 3D data of trunk and spine deformities without radiation exposure, thus allowing safer clinical monitoring of the mainly infantile and adolescent patients. The accuracy, validity and reliability of measurements of different VRS-systems for the clinical use has been proven by several studies.

Conclusion The instrumented movement analysis is an additional tool that aids clinical practitioners of O/U in the dynamic assessment of pathologic movement and loading patterns. In conjunction with common radiologic imaging it aids in the planning of type and extent of corrective surgical interventions. In the field of orthopaedics and trauma surgery movement analysis can help as an additional diagnostic tool to develop therapeutic strategies and evaluate clinical outcomes.



Publikationsverlauf

Artikel online veröffentlicht:
10. Juli 2019

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References/Literatur

  • 1 Baker R. The history of gait analysis before the advent of modern computers. Gait Posture 2007; 26: 331-342
  • 2 Sutherland DH. The evolution of clinical gait analysis part l: kinesiological EMG. Gait Posture 2001; 14: 61-70
  • 3 Sutherland DH. The evolution of clinical gait analysis. Part II kinematics. Gait Posture 2002; 16: 159-179
  • 4 Sutherland DH. The evolution of clinical gait analysis part III–kinetics and energy assessment. Gait Posture 2005; 21: 447-461
  • 5 Colyer SL, Evans M, Cosker DP. et al. A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med Open 2018; 4: 24
  • 6 Baker R. Measuring Walking – a Handbook of clinical Gait Analysis. London: Mac Keith Press; 2013
  • 7 Platz T. Charakterisierung motorischer Defizite und Prädiktion des Therapieerfolges mittels Bewegungsanalyse und Analyse bewegungskorrelierter Potenziale (multimodales EEG). Klin Neurophysiol 2002; 33: 106-116
  • 8 Roggendorf J, Chen S, Seifried C. et al. Asymmetrie des Armschwungs und konventionelle Gangparameter zur Frühdiagnose des idiopathischen Parkinson-Syndroms mittels dreidimensionaler Bewegungsanalyse. Akt Neurol 2009; 36: P776
  • 9 Chen CPC, Huang Y-C, Chang C-N. et al. Changes of cerebrospinal fluid protein concentrations and gait patterns in geriatric normal pressure hydrocephalus patients after ventriculoperitoneal shunting surgery. Exp Gerontol 2018; 106: 109-115
  • 10 Del Din S, Galna B, Godfrey A. et al. Analysis of free-living gait in older adults with and without Parkinsonʼs disease and with and without a history of falls: identifying generic and disease specific characteristics. J Gerontol A Biol Sci Med Sci 2019; 74: 500-506
  • 11 Marquardt M. Laufen und Laufanalyse. Stuttgart: Thieme; 2012
  • 12 Baker R. Gait analysis methods in rehabilitation. J Neuroeng Rehabil 2006; 3: 4
  • 13 Sander K, Layher F, Anders C. et al. Ganganalyse nach minimal-invasiver Hüftprothesenimplantation. Orthopäde 2012; 41: 365-376
  • 14 Blumentritt S, Milde L. Exoprothetik. In: Wintermantel E. Hrsg. Medizintechnik. Berlin, Heidelberg: Springer; 2009
  • 15 Kristen KH, Kastner J, Holzreiter S. et al. [Functional evaluation of shoes for children based on gait analysis of children in the learning to walk stage]. Z Orthop Ihre Grenzgeb 1998; 136: 457-462
  • 16 Perry J, Burnfield J. Gait Analysis: normal and pathological Function. New Jersey: Slack Incorporated; 1992
  • 17 Davis III RB, Õunpuu S, Tyburski D. et al. A gait analysis data collection and reduction technique. Hum Mov Sci 1991; 10: 575-587
  • 18 Cappozzo A, Catani F, Della Croce U. et al. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 1995; 10: 171-178
  • 19 Duprey S, Naaim A, Moissenet F. et al. Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview. J Biomech 2017; 62: 87-94
  • 20 Carson MC, Harrington ME, Thompson N. et al. Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J Biomech 2001; 34: 1299-1307
  • 21 Stebbins J, Harrington M, Thompson N. et al. Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture 2006; 23: 401-410
  • 22 Leardini A, Chiari L, Della Croce U. et al. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 2005; 21: 212-225
  • 23 Growney E, Meglan D, Johnson M. et al. Repeated measures of adult normal walking using a video tracking system. Gait Posture 1997; 6: 147-162
  • 24 Kadaba MP, Ramakrishnan HK, Wootten ME. et al. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 1989; 7: 849-860
  • 25 McGinley JL, Baker R, Wolfe R. et al. The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 2009; 29: 360-369
  • 26 Piotter JM, Post PA, Vanden Berg KJ. Repeatability of kinematic and kinetic Data in the Analysis of normal human Gait. Masters Theses 475. Allendale, USA: Grand Valley State University; 1999
  • 27 Tsushima H, Morris ME, McGinley J. Test-retest reliability and inter-tester reliability of kinematic data from a three-dimensional gait analysis system. J Jpn Phys Ther Assoc 2003; 6: 9-17
  • 28 Liljenqvist U, Halm H, Hierholzer E, Drerup B. et al. [3-dimensional surface measurement of spinal deformities with video rasterstereography]. Z Orthop Ihre Grenzgeb 1998; 136: 57-64
  • 29 Liu XC, Thometz JG, Tassone JC. et al. Historical review and experience with the use of surface topographic systems in children with idiopathic scoliosis. OA Musculoskelet Med 2013; 1: 1-8
  • 30 Drerup B, Hierholzer E. Movement of the human pelvis and displacement of related anatomical landmarks on the body surface. J Biomech 1987; 20: 971-977
  • 31 Drerup B, Hierholzer E. Automatic localization of anatomical landmarks on the back surface and construction of a body-fixed coordinate system. J Biomech 1987; 20: 961-970
  • 32 Schülein S, Mendoza S, Malzkorn R. et al. Rasterstereographic evaluation of interobserver and intraobserver reliability in postsurgical adolescent idiopathic scoliosis patients. J Spinal Disord Tech 2013; 26: E143-E149
  • 33 Ceseracciu E, Sawacha Z, Cobelli C. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS One 2014; 9: e87640
  • 34 Corazza S, Mündermann L, Chaudhari AM. et al. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann Biomed Eng 2006; 34: 1019-1029
  • 35 Mündermann L, Corazza S, Andriacchi TP. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J Neuroeng Rehabil 2006; 3: 6
  • 36 Otte K, Kayser B, Mansow-Model S. et al. Accuracy and reliability of the Kinect version 2 for clinical measurement of motor function. PLoS One 2016; 11: e0166532
  • 37 Stief F. Variations of Marker Sets and Models for Standard Gait Analysis. In: Müller B, Wolf S. eds. Handbook of human Motion. Basel: Springer International Publishing; 2018: 509-526
  • 38 Sangeux M, Peters A, Baker R. Hip joint centre localization: evaluation on normal subjects in the context of gait analysis. Gait Posture 2011; 34: 324-328
  • 39 Kainz H, Graham D, Edwards J. et al. Reliability of four models for clinical gait analysis. Gait Posture 2017; 54: 325-331
  • 40 Madsen MS, Ritter MA, Morris HH. et al. The effect of total hip arthroplasty surgical approach on gait. J Orthop Res 2004; 22: 44-50
  • 41 Mont MA, Seyler TM, Ragland PS. et al. Gait analysis of patients with resurfacing hip arthroplasty compared with hip osteoarthritis and standard total hip arthroplasty. J Arthroplasty 2007; 22: 100-108
  • 42 Bouchard R, Meeder PJ, Krug F. et al. Bestimmung der Tibiatorsion – Vergleich von klinischen Winkelmessungen zur Computertomographie. Fortschr Röntgenstr 2004; 176: 1278-1284
  • 43 Sangeux M, Mahy J, Graham HK. Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other?. Gait Posture 2014; 39: 12-16
  • 44 Günther KP, Kessler S, Tomczak R. et al. Femorale Antetorsion: Stellenwert klinischer und bildgebender Untersuchungsverfahren bei Kindern und Jugendlichen. Z Orthop Unfall 1996; 134: 295-301
  • 45 Cordier W, Katthagen B-D. Femorale Torsionsfehler. Orthopäde 2000; 29: 795-801
  • 46 Keppler P, Strecker W, Kinzl L. [CT determination of leg length and torsion in children and adolescents]. Unfallchirurg 1999; 102: 936-941
  • 47 Jaarsma RL, Bruggeman AWA, Pakvis DFM. et al. Computed tomography determined femoral torsion is not accurate. Arch Orthop Trauma Surg 2004; 124: 552-554
  • 48 Höglinger M. Zum möglichen Einfluss einer 3D-Ganganalyse auf die Operationsplanung bei Rotationsfehlstellungen der unteren Extremität [Magisterarbeit]. Universität Wien: Zentrum für Sportwissenschaften und Universitätssport; 2007
  • 49 Lampert C, Thomann B, Brunner R. [Tibial torsion deformities]. Orthopade 2000; 29: 802-807
  • 50 Westberry DE, Wack LI, Davis RB. et al. Femoral anteversion assessment: comparison of physical examination, gait analysis, and EOS biplanar radiography. Gait Posture 2018; 62: 285-290
  • 51 Wolf SI. Rolle der Bewegungsanalyse in Orthopädie und Unfallchirurgie. Trauma Berufskrankh 2013; 15: 266-275
  • 52 Doderlein L, Wolf S. [The value of instrumented gait analysis in infantile cerebral palsy]. Orthopade 2004; 33: 1103-1118
  • 53 Dreher T, Wolf SI, Heitzmann D. et al. Long-term outcome of femoral derotation osteotomy in children with spastic diplegia. Gait Posture 2012; 36: 467-470
  • 54 Dreher T, Wolf SI, Maier M. et al. Long-term results after distal rectus femoris transfer as a part of multilevel surgery for the correction of stiff-knee gait in spastic diplegic cerebral palsy. J Bone Joint Surg Am 2012; 94: e142 (1–10)
  • 55 Carriero A, Zavatsky A, Stebbins J. et al. Correlation between lower limb bone morphology and gait characteristics in children with spastic diplegic cerebral palsy. J Pediatr Orthop 2009; 29: 73-79
  • 56 Radler C, Kranzl A, Manner HM. et al. Torsional profile versus gait analysis: consistency between the anatomic torsion and the resulting gait pattern in patients with rotational malalignment of the lower extremity. Gait Posture 2010; 32: 405-410
  • 57 Ludwig O. Ganganalyse in der Praxis – Anwendung in Prävention, Therapie und Versorgung. 2. Aufl.. Geislingen/Steige: C. Maurer; 2013
  • 58 Simmel S, Drisch S, Augat P. et al. Indikationsprüfung neuer Prothesenpassteile bei Oberschenkelamputierten. Trauma Berufskrankh 2016; 18: 103-107
  • 59 Daruwalla JS, Balasubramaniam P. Moiré topography in scoliosis. Its accuracy in detecting the site and size of the curve. J Bone Joint Surg Br 1985; 67: 211-213
  • 60 Schröder J. Non-invasive scoliosis-screening – a validity study for early diagnosis by means of raster stereography. OUP 2015; 12: 588-593 doi:10.3238/oup.2015.0516-0521
  • 61 Berryman F, Pynsent P, Fairbank J. et al. A new system for measuring three-dimensional back shape in scoliosis. Eur Spine J 2008; 17: 663-672
  • 62 Sakka SA, Macindoe S, Mehta MH. Correlation of the Quantec Scanner Measurements with X-Ray Measurements in Scoliosis. In: Sevastik JA, Diab KM. eds. Research into Spinal Deformities 1. Amsterdam: ios press; 1997
  • 63 Adam CJ, Izatt MT, Harvey JR. et al. Variability in Cobb angle measurements using reformatted computerized tomography scans. Spine (Phila Pa 1976) 2005; 30: 1664-1669
  • 64 Rosenfeldt MP, Harding IJ, Hauptfleisch JT. et al. A Comparison of traditional protractor versus Oxford Cobbometer radiographic measurement: intraobserver measurement variability for Cobb angles. Spine (Phila Pa 1976) 2005; 30: 440-443
  • 65 Pruijs JE, Hageman MA, Keessen W. et al. Variation in Cobb angle measurements in scoliosis. Skeletal Radiol 1994; 23: 517-520
  • 66 Drerup B, Hierholzer E. Back shape measurement using video rasterstereography and three-dimensional reconstruction of spinal shape. Clin Biomech (Bristol, Avon) 1994; 9: 28-36
  • 67 Hackenberg L, Hierholzer E, Pötzl W. et al. Rasterstereographic back shape analysis in idiopathic scoliosis after anterior correction and fusion. Clin Biomech (Bristol, Avon) 2003; 18: 1-8
  • 68 Tessakov DK, Naumovich AS. Diagnostic Value of Video Rasterstereography of the Spine. In: Sevastik JA, Diab KM. eds. Research into spinal Deformities 1. Amsterdam: ios press; 1997: 277-278
  • 69 Theologis TN, Fairbank JCT, Turner-Smith AR. et al. Early detection of progression in adolescent idiopathic scoliosis by measurement of changes in back shape with the integrated shape imaging system scanner. Spine (Phila Pa 1976) 1997; 22: 1223-1227
  • 70 Weisz I, Jefferson RJ, Turner-Smith AR. et al. ISIS scanning: a useful assessment technique in the management of scoliosis. Spine (Phila Pa 1976) 1988; 13: 405-408
  • 71 Theologis TN, Jefferson RJ, Simpson AH. et al. Quantifying the cosmetic defect of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 1993; 18: 909-912
  • 72 Liu XC, Lyon R. Axial Rotation in idiopathic Scoliosis: A Comparison of the Perdriolle, Scoliometer, and the Quantec Spinal Image System. In: Stokes IAF. ed. Research into spinal Deformities 2. Amsterdam: ios press; 1999
  • 73 James R. Considerations of Movement Variability in Biomechanics Research. In: Stergiou N. ed. Innovative Analyses of Human Movement. Stanningley, UK: human kinetics; 2004: 29-62
  • 74 Jöllenbeck T. Bewegungsanalyse – wesentliches Element moderner sportmedizinischer Diagnostik. Dtsch Z Sportmed 2012; 63: 59-60
  • 75 Nüesch C, Roos E, Pagenstert G. et al. Measuring joint kinematics of treadmill walking and running: comparison between an inertial sensor based system and a camera-based system. J Biomech 2017; 57: 32-38
  • 76 Mudge AJ, Bau KV, Purcell LN. et al. Normative reference values for lower limb joint range, bone torsion, and alignment in children aged 4–16 years. J Pediatr Orthop B 2014; 23: 15-25
  • 77 Jöllenbeck T. Ganganalyse im Spannungsfeld zwischen Mensch und Technik. In: Witte K, Edelmann-Nusser J. Hrsg. Sporttechnologie zwischen Theorie und Praxis. Aachen: Shaker; 2015: 67-75