CC BY-NC-ND 4.0 · Planta Med 2019; 85(07): 535-551
DOI: 10.1055/a-0857-6633
Biological and Pharmacological Activity
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Current Methods for the Discovery of New Active Ingredients from Natural Products for Cosmeceutical Applications

Claudia A. Espinosa-Leal
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N. L., México
,
Silverio Garcia-Lara
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N. L., México
› Author Affiliations
Further Information

Publication History

received 08 November 2018
revised 07 February 2019

accepted 09 February 2019

Publication Date:
29 March 2019 (online)

Abstract

Cosmeceuticals are designed to serve a dual purpose: to provide desired esthetical effects and to treat dermatological conditions. Natural products derived from plants and marine organisms are a novel source of potential cosmeceutical active ingredients for incorporation into new formulations due to consumer demands. Contrary to common perceptions, most regulatory agencies do not view cosmeceuticals as being a separate category from cosmetics; thus, these products are not regulated accordingly, thereby forcing the consumer to rely on the self-regulatory policies of the cosmetics industry. Cosmeceuticals are advertised as having capabilities that include anti-aging, anti-acne, solar-protective, wound healing, and skin whitening. Such traits normally comprise several biological activities. In order to ensure the safety and efficacy of these products, active ingredients employed in the formulations must undergo a series of tests. In this review, in vitro (enzymatic and cellular) and in vivo tests employed to evaluate the potential of new cosmeceutical active ingredients are discussed, and new trends that are being explored by the cosmeceutical industry are described.

 
  • References

  • 1 Gebelin CG. Chemistry and our Life. In: Colin WH. Chemistry and our Life. USA: Graphic World Publishing Services; 1997: 435-456
  • 2 Dorni AC, Amalraj A, Gopi S, Varma K, Anjana SN. Novel cosmeceuticals from plants – an industry guided review. J Appl Res Med Aromat Plants 2017; 7: 1-26
  • 3 Sorvino C. Why the $445 billion beauty industry is a gold mine for self made women. Forbes. Available at: https://www.forbes.com/sites/chloesorvino/2017/05/18/self-made-women-wealth-beauty-gold-mine/%23364fbaa32a3a Accessed November 13, 2017
  • 4 Reed RE. The definition of cosmeceuticals. J Cosmet Sci 1964; 13: 103-110
  • 5 Newburger AE. Cosmeceuticals: myths and misconceptions. Clin Dermatol 2009; 27: 446-452
  • 6 De Castro ML. Cosmetobolomics as an incipient ‘-omics’ with high analytical involvement. Trends Analyt Chem 2011; 30: 1365-1371
  • 7 Draelos ZD. Cosmeceuticals: undefined, unclassified, and unregulated. Clin Dermatol 2009; 27: 431-434
  • 8 Lintner K, Mas-Chamberlin C, Mondon P, Peschard O, Lamy L. Cosmeceuticals and active ingredients. Clin Dermatol 2009; 27: 461-468
  • 9 U.S. Department of Health and Human Services. Cosmetics “Cosmeceutical”. U.S. Food and Drug Administration. Available at: https://www.fda.gov/Cosmetics/Labeling/Claims/ucm127064.htm Accessed July 9, 2018
  • 10 Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta 2018; 284: 1-18
  • 11 Puente-Garza CA, García-Lara S, Gutiérrez-Uribe JA. Enhancement of saponins and flavonols by micropropagation of Agave salmiana . Ind Crops Prod 2017; 105: 225-230
  • 12 Puente-Garza CA, Meza-Miranda C, Ochoa-Martínez D, García-Lara S. Effect of in vitro drought stress on phenolic acids, flavonols, saponins and antioxidant activity in Agave salmiana . Plant Physiol Biochem 2017; 115: 400-407
  • 13 Espinosa-Leal C, Treviño-Neávez JF, Garza-Padrón RA, Verde-Star MJ, Rivas-Morales C, Morales-Rubio ME. Total phenols and anti-radical activity of methanolic extracts from wild and in vitro conditions of Leucophyllum frutescens . Rev Mex Cienc Farm 2015; 46: 52-56
  • 14 García-Pérez E, Gutiérrez-Uribe AJ, García-Lara S. Luteolin content and antioxidant activity in micropropagated plants of Poliomintha glabrescens (Gray). Plant Cell Tiss Organ Cult 2012; 108: 521-527
  • 15 Royer M, Prado M, García-Pérez ME, Diouf PN, Stevanovic T. Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition 2013; 1: 158-167
  • 16 Ndlovu G, Fouche G, Tselanyane M, Cordier W, Steenkamp V. In vitro determination of the anti-aging potential of four southern African medicinal plants. BMC Complement Altern Med 2013; 13: 304
  • 17 Liyanaarachchi GD, Samarasekera JK, Mahanama KR, Hemalal KD. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind Crops Prod 2018; 111: 597-605
  • 18 Wijesinghe WA, Jeon YJ. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review. Phytochem Rev 2011; 10: 431-443
  • 19 Anunciato TP, da Rocha Filho PA. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J Cosmet Dermatol 2012; 11: 51-54
  • 20 Mohamed S, Hashim SN, Rahman HA. Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci. Technol 2012; 23: 83-96
  • 21 Sanjeewa KK, Kim EA, Son KT, Jeon YJ. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol B 2016; 162: 100-105
  • 22 Corinaldesi C, Barone G, Mercellini F, DellʼAnno A, Danovaro R. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar Drugs 2017; 15: 118
  • 23 Agrawal S, Adholeya A, Barrow CJ, Deshmukh SK. Marine fungi: an untapped bioresource for future cosmeceuticals. Phytochem Lett 2018; 23: 15-20
  • 24 Jones WP, Kinghorn AD. Extraction of Plant secondary Metabolites. In: Sarker S, Nahar L. eds. Natural Products Isolation: Methods in molecular Biology (Methods and Protocols). New York: Humana Press; 2012: 341-366
  • 25 Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plantsʼ extracts. Afr J Tradit Complement Altern Med 2011; 8: 1-10
  • 26 Khan MK, Abert-Vian M, Fabiano-Tixier AS, Dangles O, Chemat F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem 2010; 119: 851-858
  • 27 Sharmila G, Nikitha VS, Ilaiyarasi S, Dhivya K, Rajasekar V, Kumar NM, Muthukumaran K, Muthukumaran C. Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind Crops Prod 2016; 84: 13-21
  • 28 Yahya NA, Attan N, Wahab RA. An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds. Food and Bioproducts Processing 2018; 112: 69-85
  • 29 Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valero JR. Extraction and analysis of polyphenols: recent trends. Crit Rev Biotechnol 2011; 31: 227-249
  • 30 Azmir J, Zaidul IS, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 2013; 117: 426-436
  • 31 Adetunji LR, Adekunle A, Orsat V, Raghavan V. Advances in the pectin production process using novel extraction techniques: a review. Food Hydrocoll 2017; 62: 239-250
  • 32 Herrero M, Cifuentes A, Ibanez E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants food-by-products, algae and microalgae: a review. Food Chem 2006; 98: 136-148
  • 33 Gil-Chávez GJ, Villa JA, Ayala-Zavala JF, Heredia JB, Sepulveda D, Yahia EM, González-Aguilar GA. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Saf 2013; 12: 5-23
  • 34 Wang L, Weller C. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006; 17: 300-312
  • 35 Chemat F, Vian MA, Cravotto G. Green extraction of natural products: concept and principles. Int J Mol Sci 2012; 13: 8615-8627
  • 36 Sarker SD, Nahar L. An Introduction to natural Products Isolation. In: Sarker SD, Nahar L. eds. Natural Products Isolation. New York: Springer Science+Business Media; 2012: 1-25
  • 37 Tanaka M, Misawa E, Yamauchi K, Abe F, Ishizaki C. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women. Clin Cosmet Investig Dermatol 2015; 8: 95-104
  • 38 Almeida A, Sarmento B, Rodrigues F. Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients. Int J Pharm 2017; 519: 178-185
  • 39 Vinardell MP, Mitjans M. Alternative methods to animal testing for the safety evaluation of cosmetic ingredients: an overview. Cosmetics 2017; 4: 1-14
  • 40 OECD. Test No. 430: In vitro skin corrosion: transcutaneous electrical resistance test method (TER). OECD Better Policies for Better Lives. Available at: http://www.oecd.org/publications/test-no-430-in-vitro-skin-corrosion-transcutaneous-electrical-resistance-test-method-ter-9789264242739-en.htm Accessed January 22, 2019
  • 41 OECD. Test No. 431: In vitro skin corrosion: reconstructed human epidermis (RHE) test method. OECD Better Policies for Better Lives. Available at: http://www.oecd.org/env/test-no-431-in-vitro-skin-corrosion-reconstructed-human-epidermis-rhe-test-method-9789264264618-en.htm Accessed January 22, 2019
  • 42 OECD. Test No. 435: In vitro membrane barrier test method for skin corrosion. OECD Better Policies for Better Lives. Available at: http://www.oecd.org/env/test-no-435-in-vitro-membrane-barrier-test-method-for-skin-corrosion-9789264242791-en.htm Accessed January 22, 2019
  • 43 Raschke C, Elsner P. Skin Aging: a Brief Summary of characteristic Changes. In: Farage MA, Miller KW, Maibach HI. eds. Textbook of Aging Skin. Berlin: Springer; 2010: 55-65
  • 44 Chattuwatthana T, Okello E. Anti-collagenase, anti-elastase and antioxidant activities of Pueraria candollei var. mirifica root extract and Coccinia grandis fruit juice extract: an in vitro study. European J Med Plants 2015; 5: 318-327
  • 45 Thring TS, Hili P, Naughton DP. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med 2009; 9: 1-11
  • 46 Mukherjee PK, Maity N, Nema NK, Sarkarm BK. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011; 19: 64-73
  • 47 Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev 2002; 123: 801-810
  • 48 Buckingham EM, Klingelhutz AJ. The role of telomeres in the ageing of human skin. Exp Dermatol 2011; 20: 297-302
  • 49 Murina AT, Kerisit KG, Boh EE. Mechanisms of skin aging. Cosmet Dermatol 2012; 25: 399-402
  • 50 Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev 2002; 1: 705-720
  • 51 Fulop T, Khalil A, Larbi A. The role of elastin peptides in modulating the immune response in aging and age-related diseases. Pathol Biol 2012; 60: 28-33
  • 52 Manuskiatti W, Maibach H. Hyaluronic acid and skin: wound healing and aging. Int J Dermatol 1996; 35: 539-544
  • 53 Hsu MF, Chiang BH. Stimulating effects of Bacillus subtilis natto-fermented Radix astragali on hyaluronic acid production in human skin cells. J Ethnopharmacol 2009; 125: 474-481
  • 54 Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. Mechanisms of photoaging and chronological skin aging. Arch Dermatol 2002; 138: 1462-1470
  • 55 Pfeifer GP, Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 2012; 11: 90-97
  • 56 Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J Agric Food Chem 2005; 53: 4290-4302
  • 57 Van Wart HE, Steinbrink DR. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal Biochem 1981; 113: 356-365
  • 58 Kraunsoe JA, Claridge T, Lowe G. Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic trypsin inhibitor. Biochemistry 1996; 35: 9090-9096
  • 59 Takahashi T, Ikegami-Kawai M, Okuda R, Suzuki K. A fluorimetric Morgan-Elson assay method for hyaluronidase activity. Anal Biochem 2003; 322: 257-263
  • 60 Dorfman A, Ott ML. A turbidimetric method for the assay of hyaluronidase. J Biol Chem 1948; 172: 367-375
  • 61 Di Ferrante N. Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity. J Biol Chem 1956; 220: 303-306
  • 62 Dorfman A. The kinetics of the enzymatic hydrolysis of hyaluronic acid. J Biol Chem 1948; 172: 377-387
  • 63 Bonner jr. WM, Cantey EY. Colorimetric method for determination of serum hyaluronidase activity. Clin Chim Acta 1966; 13: 746-752
  • 64 Benchetrit LC, Pahuja SL, Grey ED, Edstrom RD. A sensitive method for the assay of hyaluronidase activity. Anal Biochem 1977; 79: 431-437
  • 65 Homer KA, Denbow L, Beighton D. Spectrophotometric method for the assay of glycosaminoglycans and glycosaminoglycan-depolymerizing enzymes. Anal Biochem 1993; 214: 435-441
  • 66 Vercruysse KP, Lauwers AR, Demeester JM. Kinetic investigation of the action of hyaluronidase on hyaluronan using the Morgan-Elson and neocuproine assays. Biochem J 1995; 310: 55-59
  • 67 Nakamura T, Majima M, Kubo K, Takagaki K, Tamura S, Endo M. Hyaluronidase assay using fluorogenic hyaluronate as a substrate. Anal Biochem 1990; 191: 21-24
  • 68 Laurent UB, Tengblad A. Determination of hyaluronate in biological samples by a specific radioassay technique. Anal Biochem 1980; 109: 386-394
  • 69 Richman PG, Baer H. A convenient plate assay for the quantitation of hyaluronidase in Hymenoptera venoms . Anal Biochem 1980; 109: 376-381
  • 70 Tung JS, Mark GE, Hollis GF. A microplate assay for hyaluronidase and hyaluronidase inhibitors. Anal Biochem 1994; 223: 149-152
  • 71 Stern M, Stern R. An ELISA-like assay for hyaluronidase and hyaluronidase inhibitors. Matrix 1992; 12: 397-403
  • 72 Delpech B, Bertrand P, Maingonnat C, Girard N, Chauzy C. Enzyme-linked hyaluronectin: a unique reagent for hyaluronan assay and tissue location and for hyaluronidase activity detection. Anal Biochem 1995; 229: 35-41
  • 73 Gregory I, Stern R. A microtiter-based assay for hyaluronidase activity not requiring specialized reagents. Anal Biochem 1997; 251: 263-269
  • 74 Cramer JA, Bailey LC. A reversed-phase ion-pair high-performance liquid chromatography method for bovine testicular hyaluronidase digests using postcolumn derivatization with 2-cyanoacetamide and ultraviolet detection. Anal Biochem 1991; 196: 183-191
  • 75 Guntenhöner MW, Pogrel MA, Stern RA. A substrate-gel assay for hyaluronidase activity. Matrix 1992; 12: 388-396
  • 76 Elson LA, Morgan W. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem J 1933; 27: 1824-1828
  • 77 Reissig JL, Strominger JL, Leloir LF. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 1955; 217: 959-966
  • 78 Gollnick H. Acne and related Disorders. In: Elzouki AY, Harfi HA, Nazer H, Oh W, Stapleton FB, Whitley RJ. eds. Textbook of clinical Pediatrics. Berlin: Springer; 2012: 1447-1466
  • 79 Mahmood NF, Shipman AR. The age-old problem of acne. Int J Womens Dermatol 2017; 3: 71-76
  • 80 Thiboutot DM, Dréno B, Abanmi A, Alexis AF, Araviiskaia E, Barona Cabal MI, Bettoli V, Casintahan F, Chow S, da Costa A, El Ouazzani T, Goh CL, Gollnick HPM, Gomez M, Hayashi N, Herane MI, Honeyman J, Kang S, Kemeny L, Kubba R, Lambert J, Layton AM, Leyden JJ, López-Estebaranz JL, Noppakun N, Ochsendorf F, Oprica C, Orozco B, Perez M, Piquero-Martin J, See JA, Suh DH, Tan J, Lozada VT, Troielli P, Xiang LF. Practical management of acne for clinicians: an international consensus from the Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol 2018; 78: S1-S23
  • 81 Gollnick HP, Bettoli V, Lambert J, Araviiskaia E, Binic I, Dessinioti C, Galadari I, Ganceviciene R, Ilter N, Kaegi M, Kemeny L, López-Estebaranz JL, Massa A, Oprica C, Sinclair W, Szepietowski JC, Dréno B. A consensus-based practical and daily guide for the treatment of acne patients. J Eur Acad Dermatol Venereol 2016; 30: 1480-1490
  • 82 Toombs EL. Cosmetics in the treatment of acne vulgaris. Dermatol Clin 2005; 23: 575-581
  • 83 Coenye T, Peeters E, Nelis HJ. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res Microbiol 2007; 158: 386-392
  • 84 Thiboutot D, Gollnick H, Bettoli V, Dréno B, Kang S, Layden JJ, Shalita AR, Lozada VT, Berson D, Finlay A, Goh CL, Herane MI, Kaminsky A, Kubba R, Layton A, Miyachi Y, Perez M, Martin JP, Ramos-E-Silva M, See JA, Shear N, Wolf jr. J. Global Alliance to Improve Outcomes in Acne. New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne Group. J Am Acad Dermatol 2009; 60: S1-S50
  • 85 Vora J, Srivastava A, Modi H. Antibacterial and antioxidant strategies for acne treatment through plant extracts. Informatics in Medicine Unlocked 2018; 13: 128-132
  • 86 Han R, Blencke HM, Cheng H, Li C. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris. Peptides 2018; 99: 36-43
  • 87 Heatley NG. A method for the assay of penicillin. Biochem J 1944; 38: 61-65
  • 88 Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. JPA 2016; 6: 71-79
  • 89 Lee TW, Kim JC, Hwang SJ. Hydrogel patches containing triclosan for acne treatment. Eur J Pharm Biopharm 2003; 56: 407-412
  • 90 Hoq MI, Ibrahim HR. Potent antimicrobial action of triclosan-lysozyme complex against skin pathogens mediated through drug-targeted delivery mechanism. Eur J Pharm Sci 2011; 42: 130-137
  • 91 Jeong WY, Kim K. Anti-Propionibacterium acnes and the anti-inflammatory effect of Aloe ferox Miller components. J Herb Med 2017; 9: 53-59
  • 92 Shah P, Modi HA, Shukla MD, Lahiri SK. Preliminary phytochemical analysis and antibacterial activity of Ganoderma lucidum collected from dang district of Gujarat, India. Int J Curr Microbiol App Sci 2014; 4: 246-255
  • 93 Tsung-Hsien T, Tzung-Hsun T, Wenhuey W, Po-Jung T. In vitro antimicrobial and anti-inflammatory effects of herbs against Propionibacterium acnes . Food Chem 2010; 119: 964-968
  • 94 Gilaberte Y, González S. Update on photoprotection. Actas Dermosifiliogr 2010; 101: 659-672
  • 95 Mouret S, Bogdanowicz P, Haure MJ, Castex-Rizzi N, Cadet J, Favier A, Douki T. Assessment of the photoprotection properties of sunscreens by chromatographic measurement of DNA damage in skin explants. Photochem Photobiol 2011; 87: 109-116
  • 96 Schuch AP, Moraes MC, Yagura T, Menck CF. Highly sensitive biological assay for determining the photoprotective efficacy of sunscreen. Environ Sci Technol 2014; 48: 11584-11590
  • 97 Wang SQ, Xu H, Stanfield JW, Osterwalder U, Herzog B. Comparison of ultraviolet A light protection standards in the United States and European Union through in vitro measurements of commercially available sunscreens. J Am Acad Dermatol 2017; 77: 42-47
  • 98 Figueiredo SA, de Moraes DC, Vilela FMP, de Faria AN, dos Santos MH, Fonseca MJV. A novel research model for evaluating sunscreen protection in the UV-A1. J Photochem Photobiol B 2018; 178: 61-68
  • 99 Juzeniene A, Moan J. Beneficial effects of UV radiation other than via vitamin D production. Dermatoendocrinol 2012; 4: 109-117
  • 100 Wright F, Weller RB. Risks and benefits of UV radiation in older people: more of a friend than a foe?. Maturitas 2015; 81: 425-431
  • 101 Radice M, Manfredini S, Ziosi P, Dissette V, Buso P, Fallacara A, Vertuani S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia 2016; 114: 144-162
  • 102 Li CC, Lin YT, Chen YT, Sie SF, Chen-Yang YW. Improvement in UV protection retention capability and reduction in skin penetration of benzophenone-3 with mesoporous silica as drug carrier by encapsulation. Photochem Photobiol B 2015; 148: 277-283
  • 103 Ullrich SE, Schmitt DA. The role of cytokines in UV-induced systemic immune suppression. J Dermatol Sci 2000; 23: 10-12
  • 104 Walterscheid JP, Nghiem DX, Ullrich SE. Determining the role of cytokines in UV-induced immunomodulation. Methods 2002; 28: 71-78
  • 105 Ullrich SE. Mechanisms underlying UV-induced immune suppression. Mutat Res Fundam Mol Mech Mutagen 2005; 571: 185-205
  • 106 Nick S, Daniele D, Angelo A. Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 2007; 360: 794-802
  • 107 Shaath NA. Ultraviolet filters. Photochem Photobiol Sci 2010; 9: 463-469
  • 108 Diffey BL, Tanner PR, Matts PJ, Nash JF. In vitro assessment of the broad-spectrum ultraviolet protection of sunscreen products. J Am Acad Dermatol 2000; 43: 1024-1035
  • 109 Chen-Yang YW, Chen YT, Li CC, Yu HC, Chuang YC, Su JH, Lin YT. Preparation of UV-filter encapsulated mesoporous silica with high sunscreen ability. Mater Lett 2011; 65: 1060-1062
  • 110 Greiter F. Sun protection factor-development methods. Parf Kosm 1970; 55: 70-75
  • 111 Scalka S, dos Reis VMS. Fator de proteção solar: significado e controvérsias. An Bras Dermatol 2011; 86: 507-515
  • 112 Pelizzo M, Zattra E, Nicolosi P, Peserico A, Garoli D, Alaibac M. In vitro evaluation of sunscreens: an update for the clinicians. ISRN Dermatol 2012; 2012: 1-4
  • 113 Hibbert SA, Costello P, OʼConnor C, Bell M, Griffiths CE, Watson RE, Sherratt MJ. A new in vitro assay to test UVR protection of dermal extracellular matrix components by a flat spectrum sunscreen. J Photochem Photobiol B 2017; 175: 58-64
  • 114 Diffey BL, Robson JA. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J Soc Cosmet Chem 1989; 40: 127-133
  • 115 Gharavi SM, Tavakoli N, Paradakhti A, Baghaei-Zadeh N. Determination of sun protection factor of sunscreens by two different in vitro methods. J Res Med Sci 1999; 2: 53-54
  • 116 Mansur JS, Breder MN, Mansur MC, Azulay RD. Determinaçãodofactorde proteção solar por espectrofotometria. An Bras Dermatol 1986; 61: 121-124
  • 117 Huang CC, Wu WB, Fang JY, Chiang HS, Chen SK, Chen YT, Hung CF. Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules 2007; 7: 1845-1858
  • 118 Santa-Maria C, Revilla E, Miramontes E, Bautista J, García-Martínez A, Romero E, Carballo M, Parrado J. Protection against free radicals (UVB irradiation) of a water-soluble enzymatic extract from rice bran. Study using human keratinocyte mono-layer and reconstructed human epidermis. Food Chem Toxicol 2010; 48: 83-88
  • 119 Casagrande R, Georgetti SR, Verri JW, Dorota DJ, Dos Santos AC, Fonseca MJ. Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. J Photochem Photobiol B 2006; 84: 21-27
  • 120 Casagrande R, Georgetti SR, Verri JW, Borin MF, Lopez RF, Fonseca MJ. In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional stability by antioxidant activity. Intern J Pharm 2007; 328: 183-190
  • 121 Petrova A, Davids LM, Rautenbach F, Marnewick JL. Photoprotection by honeybush extracts, hesperidin and mangiferin against UVB-induced skin damage in SKH-1 mice. J Photochem Photobiol B 2011; 103: 126-139
  • 122 Botta C, Giorgio CD, Sabatier A, Méo M. Genotoxicity of visible light (400–800 nm) and photoprotection assessment of ectoin, L-ergothioneine and mannitol and four sunscreens. J Photochem Photobiol B 2008; 91: 24-34
  • 123 Figueiredo SA, Vilela FM, Silva CA, Cunha TM, dos Santos MH, Fonseca MJ. In vitro and in vivo photoprotective/photochemopreventive potential of Garcinia brasiliensis epicarp extract. J Photochem Photobiol B 2014; 131: 65-73
  • 124 Martins RM, Siqueira S, Fonseca MJ, Freitas LA. Skin penetration and photoprotection of topical formulations containing benzophenone-3 solid lipid microparticles prepared by the solvent-free spray-congealing technique. J Microencapsul 2014; 31: 644-653
  • 125 Alves GA, de Souza RO, Rogez H, Masaki H, Fonseca MJ. Cecropia obtuse, an Amazonian ethanolic extract, exhibits photochemoprotective effect in vitro and balances the redox cellular state in response to UV radiation. Ind Crop Prod 2016; 94: 893-902
  • 126 Parvez S, Kang M, Chung HS, Bae H. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health: cosmetics and agriculture industries. Phytother Res 2007; 21: 805-816
  • 127 Tada M, Kohno M, Niwano Y. Scavenging or quenching effect of melanin on superoxide anion and singlet oxygen. J Clin Biochem Nutr 2010; 46: 224-228
  • 128 Muddathir AM, Yamauchi K, Batubara I, Mohieldin EA, Mitsunaga T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S African J Bot 2017; 109: 9-15
  • 129 Sánchez-Ferrer A, Rodrígez-López J, García-Carmona F. Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1995; 1247: 1-11
  • 130 Bogh MK, Schmedes AV, Philipsen PA, Thieden E, Wulf HC. Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation. J Invest Dermatol 2010; 130: 546-553
  • 131 Xie P, Huang L, Zhang C, Ding S, Deng Y, Wang X. Skin-care effects of dandelion leaf extract and stem extract: antioxidant properties, tyrosinase inhibitory and molecular docking simulations. Ind Crops Prod 2018; 111: 238-246
  • 132 Tomita K, Oda N, Ohbayashi M, Kamei H, Miyaki T, Oki T. A new screening method for melanin biosynthesis inhibitors using Streptomyces bikiniensis . J Antibiot (Tokyo) 1990; 43: 1601-1605
  • 133 Chiari M, Joray MB, Ruiz G, Palacios SM, Carpinella MC. Tyrosinase inhibitory activity of native plants from Central Argentina: isolation of an active principle from Lithraea molleoides . Food Chem 2010; 120: 10-14
  • 134 Lazarus GS, Cooper DM, Knighton DR, Percoraro RE, Rodeheaver G, Robson MC. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen 1994; 2: 165-170
  • 135 Strodtbeck F. Physiology of wound healing. Newborn Infant Nurs Rev 2001; 1: 43-45
  • 136 Jarić S, Kostić O, Mataruga Z, Pavlović D, Pavlović M, Mitrović M, Pavlović P. Traditional wound-healing plants used in the Balkan region (Southeast Europe). J Ethnopharmacol 2018; 211: 311-328
  • 137 Agyare C, Boakye YD, Bekoe EO, Hensel A, Dapaah SO, Appiah T. Review: African medicinal plants with wound healing properties. J Ethnopharmacol 2016; 177: 85-100
  • 138 Huang C, Leavitt T, Bayer LR, Orgill DP. Effect of negative pressure wound therapy on wound healing. Curr Probl Surg 2014; 51: 301-331
  • 139 Vidmar J, Chingwaru C, Chingwaru W. Mammalian cell models to advance our understanding of wound healing: a review. J Surg Res 2017; 210: 269-280
  • 140 Mathieu D, Linke JC, Wattel F. Non-healing Wounds. In: Mathieu D. ed. Handbook on hyperbaric Medicine. Netherlands: Springer; 2006: 401-427
  • 141 Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol 2007; 25: 19-25
  • 142 Gottrup A, Ågren MS, Karlsmark T. Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen 2000; 8: 83-96
  • 143 Bueno FG, Panizzon GP, Mello EV, Lechtenberg M, Petereit F, de Mello JC, Hensel A. Hydrolyzable tannins from hydroalcoholic extract from Poincianella pluviosa stem bark and its wound-healing properties: phytochemical investigations and influence on in vitro cell physiology of human keratinocytes and dermal fibroblasts. Fitoterapia 2014; 99: 252-260
  • 144 Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp 2014; 752: 10-24
  • 145 Davidson JM. Animal models for wound repair. Arch Dermatol Res 1998; 290: 1-11
  • 146 Gal P, Kilik R, Morkry M, Vidinsky B, Vasilenko T, Mozes S, Bobrov N, Tomori Z, Bober J, Lenhardt L. Simple method of open skin wound healing model in corticosteroid-treated and diabetic rats: standardization of semi-quantitative and quantitative histological assessments. Vet Med 2008; 53: 652-659
  • 147 Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham J, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761-771
  • 148 Li X, Liang L, Zhao P, Uchida K, Baba H, Huang H, Bai W, Bai L, Zhang M. The effects of adenoviral transfection of the keratinocyte growth factor gene on epidermal stem cells: an in vitro study. Mol Cell 2013; 36: 316-321
  • 149 Liu M, Saeki K, Matsunobu T, Okuno T, Koga T, Sugimoto Y, Yokoyama C, Nakamizo S, Kabashima K, Narumiya S, Shimizu T, Yokomizo T. 12-Hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. J Exp Med 2014; 211: 1063-1078
  • 150 Ojeh NO, Navsaria HA. An in vitro skin model to study the effect of mesenchymal stem cells in wound healing and epidermal regeneration. J Biomed Mater Res A 2014; 102: 2785-2792
  • 151 Skazik C, Amann PM, Heise R, Marquardt Y, Czaja K, Kim A, Rühl R, Kurschat P, Merk HF, Bickers DR, Baron JM. Downregulation of STRA6 expression in epidermal keratinocytes leads to hyperproliferation-associated differentiation in both in vitro and in vivo skin models. J Invest Dermatol 2014; 134: 1579-1588
  • 152 Mori R, Kondo T, Nishie T, Ohshima T, Asano M. Impairment of skin wound healing in beta-1, 4-galactosyltransferase-deficient mice with reduced leukocyte recruitment. Am J Pathol 2004; 164: 1303-1314
  • 153 Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010; 89: 219-229
  • 154 Huebener P, Schwabe RT. Regulation of wound healing and organ fibrosis by toll-like receptors. Biochim Biophys Acta 2012; 1832: 1005-1017
  • 155 Forbes SJ, Rosenthal N, Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 2014; 20: 857-869
  • 156 Sturm A, Sudermann T, Schulte KM, Goebell H, Dignass AU. Modulation of intestinal epithelial wound healing in vitro and in vivo by lysophosphatidic acid. Gastroenterology 1999; 117: 368-377
  • 157 Pawar S, Kartha S, Toback FG. Differential gene expression in migrating renal epithelial cells after wounding. J Cell Physiol 1995; 165: 556-565
  • 158 Yamamoto M, Yanaga H, Nishina H, Watabe S, Mamba K. Fibrin stimulates the proliferation of human keratinocytes through the autocrine mechanism of transforming growth factor-alpha and epidermal growth factor receptor. Tohoku J Exp Med 2005; 207: 33-40
  • 159 Kim JY, Suh W. Stem cell therapy for dermal wound healing. Int J Stem Cells 2010; 3: 29-31
  • 160 Ebihara N, Matsuda A, Nakamura S, Matasuda H, Murakami A. Role of the IL-6 classic- and trans-signaling pathways in corneal sterile inflammation and wound healing. Invest Ophthalmol Vis Sci 2011; 52: 8549-8557
  • 161 Thomas DW, Hopkinson I, Hardning KG, Shepherd JP. The pathogenesis of hypertrophic/keloid scarring. Int J Oral Maxillofac Surg 1994; 24: 232-235
  • 162 Sesia SB, Duhr R, Medeiros da Cunha C, Todorov A, Schaeren S, Padovan E, Spagnoli G, Martin I, Barbero A. Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells. J Cell Physiol 2015; 230: 1258-1269
  • 163 Sato T, Kirimura Y, Mori Y. The co-culture of dermal fibroblasts with human epidermal keratinocytes induces increased prostaglandin E2 production and cyclooxygenase 2 activity in fibroblasts. J Invest Dermatol 1997; 109: 334-349
  • 164 Planz V, Lehr CM, Windbergs M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J Control Release 2016; 242: 89-104
  • 165 Kucharzewski M, Rojczyka E, Wilemska-Kucharzewska K, Wilk R, Hudecki J, Los MJ. Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 2019; 843: 307-315
  • 166 Planz V, Wang J, Windbergs M. Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics. J Pharmacol Toxicol Methods 2018; 89: 19-25
  • 167 Trujillo AN, Kesl SL, Sherwood J, Wu M, Gould LJ. Demonstration of the rat ischemic skin wound model. J Vis Exp 2015; 1: e52637
  • 168 Sami DG, Heiba HH, Abdellatif A. Wound healing models: a systematic review of animal and non-animal models. Wound Medicine 2019; 24: 8-17
  • 169 Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Repair Regen 2004; 12: 591-599
  • 170 Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J 2015; 56: 127-138
  • 171 Rittié L. Cellular mechanisms of skin repair in humans and other mammals. J Cell Commun Signal 2016; 10: 103-120
  • 172 Yao Z, Huang Y, Luo G, Wu J, He W. A biological membrane-based novel excisional wound-splinting model in mice (with video). Burns Trauma 2014; 2: 196-200
  • 173 Nagar HK, Srivastava AK, Srivastava R, Kurmi ML, Chandel HS, Ranawat MS. Pharmacological investigation of the wound healing activity of Cestrum nocturnum (L.) ointment in Wistar albino rats. J Pharm (Cairo) 2016; 2016: 9249040
  • 174 Shrivastav A, Mishra AK, Ali SS, Ahmad A, Abuzinadah MF, Khan NA. In vivo models for assessment of wound healing potential: a systematic review. Wound Medicine 2018; 20: 43-53
  • 175 Kirubanandan S, Bharathi R, Renganathan S. Histological and biochemical evaluation of wound regeneration potential of Terminalia chebula fruits. Asian J Pharm Clin 2016; 9: 228-233
  • 176 Gowda A, Shanbhag V, Shenoy S, Bangalore ES, Prabhu K, Murthy R, Venumadhav N, Goudapalla P, Narayanareddy M, Shanbhag T. Wound healing property of topical application of ethanolic extract of Michelia champaca flowers in diabetic rats. J Pharmacol Clin Sci 2016; 2: 67-74
  • 177 Patil MV, Kandhare AD, Bhise SD. Pharmacological evaluation of ethanolic extract of Daucus carota Linn root formulated cream on wound healing using excision and incision wound model. Asia Pac J Trop Biomed 2012; 2: S646-S655
  • 178 Zaouani M, Bitam A, Baz A, Benali Y, Mahdi MH. In vivo evaluation of wound healing and anti-inflammatory activity of methanolic extract of roots of Centaurea africana (L.) in topical formulation. Asian J Pharm Clin Res 2017; 10: 341-346
  • 179 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275
  • 180 Saha K, Mukherjee PK, Das J, Pal M, Saha BP. Wound healing activity of Leucas lavandulaefolia Rees. J Ethnopharmacol 1997; 56: 139-144
  • 181 Li M, Zhao Y, Hao H, Han W, Fu X. Theoretical and practical aspects of using fetal fibroblasts for skin regeneration. Ageing Res Rev 2017; 36: 32-41
  • 182 Taufikurohmah T, Winarni D, Baktir A, Sanjaya GMI, Syahrani A. Histology study: pre-clinic test of nanogold in mus musculus skin, at fibroblast proliferation and collagen biosynthesis. Chemistry and Materials Research 2013; 3: 55-60
  • 183 Ramata-Stunda A, Boroduskis M, Vorobjeva V, Ancans J. Cell and tissue culture-based in vitro test systems for evaluation of natural skin care product ingredients. Environ Exp Biol 2013; 11: 159-177
  • 184 Bae JY, Lim SS, Kim SJ, Choi JS, Park J, Ju SM, Han SJ, Kang IJ, Kang YH. Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fibroblasts. Mol Nutr Food Res 2009; 53: 726-738
  • 185 Kim YH, Kim KS, Han CS, Yang HC, Park SH, Ko KI, Lee SH, Kim KH, Lee NH, Kim JM, Son K. Inhibitory effects of natural plants of Jeju Island on elastase and MMP-1 expression. Int J Cosmet Sci 2007; 29: 487-488
  • 186 Żerańska J, Pasikowska M, Szczepanik B, Mlosek K, Malinowska S, Dębowska RM, Eris I. A study of the activity and effectiveness of recombinant fibroblast growth factor (Q40P/S47I/H93G rFGF-1) in anti-aging treatment. Postepy Dermatol Alergol 2016; 33: 28-36
  • 187 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 188 Adrien A, Bonnet A, Dufour D, Baudouin S, Maugard T, Bridiau N. Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydr Polym 2017; 157: 1306-1314
  • 189 Chaikul P, Lourith N, Kanlayavattanakul M. Antimelanogenesis and cellular antioxidant activities of rubber (Hevea brasiliensis) seed oil for cosmetics. Ind Crop Prod 2017; 108: 56-62
  • 190 Lourith N, Kanlayavattanakul M. Ceylon spinach: a promising crop for skin hydrating products. Ind Crop Prod 2017; 105: 24-28
  • 191 Kanlayavattanakul M, Lourith N, Chaikul P. Biological activity and phytochemical profiles of Dendrobium: a new source for specialty cosmetic materials. Ind Crop Prod 2018; 120: 61-70
  • 192 Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, Roberts MS. Skin models for the testing of transdermal drugs. Clin Pharmacol 2016; 8: 163
  • 193 Ruela ALM, Perissinato AG, de Sousa Lino ME, Mudrik PS, Pereira GR. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci 2016; 52: 527-544
  • 194 Moss GP, Gullick DR, Wilkinson SC. Predictive Methods in Percutaneous Absorption. Berlin: Springer; 2016: 25-42
  • 195 Shibayama H, Hisama M, Matsuda S, Ohtsuki M. Permeation and metabolism of a novel ascorbic acid derivative, disodium isostearyl 2-O-L-Ascorbyl phosphate, in human living skin equivalent models. Skin Pharmacol Physiol 2008; 21: 235-243
  • 196 Batheja P, Song Y, Wertz P, Michniak-Kohn B. Effects of growth conditions on the barrier properties of a human skin equivalent. Pharm Res 2009; 26: 1689-1700
  • 197 Sengupta A, Lichti UF, Carlson BA, Ryscavage AO, Gladyshev VN, Yuspa SH, Hatfield DL. Selenoproteins are essential for proper keratinocyte function and skin development. PLoS One 2010; 5: e12249
  • 198 Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res 2010; 28: 962-977
  • 199 Song J, Kim YC, O E. Compans RW, Prausnitz MR, Kang S. DNA vaccination in the skin using microneedles improves protection against influenza. Mol Ther 2012; 20: 1472-1480
  • 200 Mizutani Y, Sun H, Ohno Y, Sassa T, Wakashima T, Obara M, Igarashi Y. Cooperative synthesis of ultra long-chain fatty acid and ceramide during keratinocyte differentiation. PLoS One 2013; 8: e67317
  • 201 Bin B, Joo Y, Lee A, Shin S, Cho E, Lee T. Novel inhibitory effect of N (2-hydroxycyclohexyl)valiolamine on melanin production in a human skin model. Int J Mol Sci 2014; 15: 12188-12195
  • 202 Li CC, Lin YT, Chen YT, Sie SF, Chen-Yang YW. Improvement in UV protection retention capability and reduction in skin penetration of benzophenone-3 with mesoporous silica as drug carrier by encapsulation. J Photochem Photobiol B 2015; 148: 277-283
  • 203 Seino H, Arai Y, Nagao N, Ozawa N, Hamada K. Efficient percutaneous delivery of the antimelanogenic agent glabridin using cationic amphiphilic chitosan micelles. PLoS One 2016; 11: e0164061
  • 204 Ohno U, Kamiyama N, Nakamichi S, Kihara A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat Commun 2017; 8: 14610
  • 205 Vizserálek G, Berkó S, Tóth G, Balogh R, Budai-Szűcs M, Csányi E, Takács-Novák K. Permeability test for transdermal and local therapeutic patches using Skin PAMPA method. Eur J Pharm Sci 2015; 76: 165-172
  • 206 Netzlaff F, Schaefer UF, Lehr CM, Meiers P, Stahl J, Kietzmann F, Niedorf F. Comparison of bovine udder skin with human and porcine skin in percutaneous permeation experiments. Altern Lab Anim 2006; 34: 499-513
  • 207 Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev 2007; 59: 1152-1161
  • 208 Roberts ME, Mueller KR. Comparisons of in vitro nitroglycerin (TNG) flux across Yucatan pig, hairless mouse, and human skins. Pharm Res 1990; 7: 673-676
  • 209 Sato K, Sugibayashi K, Morimoto Y. Species differences in percutaneous absorption of nicorandil. J Pharm Sci 1991; 80: 104-107
  • 210 Feetham HJ, Jeong HS, McKesey J, Wickless H, Jacobe H. Skin care and cosmeceuticals: attitudes and trends among trainees and educators. J Cosmet Dermatol 2017; 17: 220-226
  • 211 Costa R, Santos L. Delivery systems for cosmetics – from manufacturing to the skin of natural antioxidants. Powder Technol 2017; 322: 402-426
  • 212 Mohamed HM. Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. Trends Analyt Chem 2015; 66: 176-192
  • 213 Salvador A, Chisvert A. Analysis of cosmetic Products. 2nd ed.. ed. Valencia: Elsevier Science; 2017: 303-330