Planta Med 2019; 85(11/12): 957-964
DOI: 10.1055/a-0853-7793
Biological and Pharmacological Activities
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

New Benzaldehyde and Benzopyran Compounds from the Endophytic Fungus Paraphaeosphaeria sp. F03 and Their Antimicrobial and Cytotoxic Activities[*]

Marcelo R. de Amorim
1   Institute of Chemistry, São Paulo State University (Unesp), Araraquara, SP, Brazil
,
Felipe Hilário
2   School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
,
Fernando M. dos Santos Junior
3   Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
,
João M. Batista Junior
3   Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
4   Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
,
Tais M. Bauab
2   School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
,
Angela R. Araújo
1   Institute of Chemistry, São Paulo State University (Unesp), Araraquara, SP, Brazil
,
Iracilda Z. Carlos
2   School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
,
Wagner Vilegas
5   Institute of Biosciences, São Paulo State University (Unesp), São Vicente, SP, Brazil
,
Lourdes C. dos Santos
1   Institute of Chemistry, São Paulo State University (Unesp), Araraquara, SP, Brazil
› Author Affiliations
Further Information

Publication History

received 03 December 2018
revised 27 January 2019

accepted 03 February 2019

Publication Date:
19 February 2019 (online)

Abstract

Three new benzaldehyde derivatives, sporulosaldeins A – C (13), and 3 new benzopyran derivatives, sporulosaldeins D – F (46), were discovered from an endophytic fungus, Paraphaeosphaeria sp. F03, which was isolated from Paepalanthus planifolius leaves. Compounds 16 were elucidated by 1- and 2-dimensional nuclear magnetic resonance experiments and high-resolution mass spectrometry analysis. The absolute configuration of compound 5 was determined through the comparison of experimental and calculated electronic circular dichroism data. Compounds 16 were found to exhibit antifungal activity with minimum inhibitory concentration (MIC) values of 7.8 – 250 µg/mL and racemic mixture of compound 6 exhibited weak cytotoxicity against MCF-7 and LM3 with IC50 values of 34.4 and 39.2 µM, respectively.

* Dedicated to Professor Dr. Cosimo Pizza 70th birthday in recognition of his outstanding contribution to natural product research.


Supporting Information

 
  • References

  • 1 Gubiani JR, Nogueira R, Pereira MDP, Young MCM, Ferreira PMP, Moraes MO, Pessoa C, Bolzani VS, Araujo AR. Rearranged sesquiterpenes and branched polyketides produced by the endophyte Camarops sp. Phytochem Lett 2016; 17: 251-257
  • 2 Mondol MAM, Farthouse J, Islam MT, Schüffler A, Laatsch H. Metabolites from the endophytic fungus Curvularia sp. M12 act as motility inhibitors against Phytophthora capsici zoospores. J Nat Prod 2017; 80: 347-355
  • 3 Guo H, Kreuzenbeck NB, Otani S, Garcia-Altares M, Dahse HM, Weigel C, Aanen DK, Hertweck C, Poulsen M, Beemelmanns C. Pseudoxylallemycins A–F, cyclic tetrapeptides with rare allenyl modifications isolated from Pseudoxylaria sp. X802: a competitor of fungus-growing termite cultivars. Org Lett 2016; 18: 3338-3341
  • 4 Chapla VM, Zeraik ML, Ximenes VF, Zanardi LM, Lopes ML, Cavalheiro AJ, Silva DHS, Young MCM, Fonseca LM, Bolzani VS, Araújo AR. Bioactive secondary metabolites from Phomopsis sp., an endophytic fungus from Senna spectabilis . Molecules 2014; 19: 6597-6608
  • 5 Amorim MR, Somensi A, Araujo AR, Bonifácio BV, Bauab TM, Santos LC. Compounds of Anthostomella brabeji, an endophytic fungus isolated from Paepalanthus planifolius (Eriocaulaceae). J Braz Chem Soc 2016; 27: 1048-1054
  • 6 Hilário F, Chapla VM, Araujo AR, Sano PT, Bauab TM, Santos LC. Antimicrobial screening of endophytic fungi isolated from Paepalanthus chiquitensis (Eriocaulaceae) led to the isolation of secondary metabolites produced by Fusarium fujikuroi . J Braz Chem Soc 2017; 28: 1389-1395
  • 7 Verkley GJM, Dukik K, Renfurm R, Göker M, Stielow JB. Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 2014; 32: 25-51
  • 8 Paranagama PA, Wijeratne EMK, Gunatilaka AAL. Uncovering biosynthetic potential of plant-associated fungi: effect of culture conditions on metabolite production by Paraphaeosphaeria quadriseptata and Chaetomium chiversii . J Nat Prod 2007; 70: 1939-1945
  • 9 Ge HM, Song YC, Chen JR, Hu S, Wu JY, Tan RX. Paranolin: a new xanthene-based metabolite from Paraphaeosphaeria nolinae . Helv Chim Acta 2006; 89: 502-506
  • 10 Seo C, Oh H, Lee HB, Kim JK, Kong IS, Ahn SC. Hexaketides from phytopathogenic fungus Paraphaeosphaeria recurvifoliae . Bull Korean Chem Soc 2007; 28: 1803-1806
  • 11 Li CS, Ding Y, Yang BJ, Miklossy G, Yin HQ, Walker LA, Turkson J, Cao S. A new metabolite with a unique 4-pyranone-γ-lactam-1,4-thiazine moiety from a Hawaiian-plant associated fungus. Org Lett 2015; 17: 3556-3559
  • 12 Tsuda M, Mugishima T, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi J. Modiolides A and B, two new 10-membered macrolides from a marine-derived fungus. J Nat Prod 2003; 66: 412-415
  • 13 Shao MW, Kong LC, Jiang DH, Zhang YL. Phytotoxic and antimicrobial metabolites from Paraphaeosphaeria sp. QTYC11 isolated from the gut of Pantala flavescens larvae. Rec Nat Prod 2016; 10: 326-331
  • 14 Suga T, Shiina M, Asami Y, Iwatsuki M, Yamamoto T, Nonaka K, Masuma R, Matsui H, Hanaki H, Iwamoto S, Onodera H, Shiomi K, Ōmura S. Paraphaeosphaeride D and berkleasmin F, new circumventors of arbekacin resistance in MRSA, produced by Paraphaeosphaeria sp. TR-022. J Antibiot 2016; 69: 605-610
  • 15 Zhang LH, Feng BM, Chen G, Li SG, Sun Y, Wu HH, Bai J, Hua HM, Wang HF, Pei YH. Sporulaminals A and B: a pair of unusual epimeric spiroaminal derivatives from a marine-derived fungus Paraconiothyrium sporulosum YK-03. RSC Adv 2016; 6: 42361-42366
  • 16 Batista JM, Blanch EW, Bolzani VS. Recent advances in the use of vibrational chiroptical spectroscopic methods for stereochemical characterization of natural products. Nat Prod Rep 2015; 32: 1280-1302
  • 17 Batista ANL, Santos jr. FM, Batista JM, Cass QB. Enantiomeric mixtures in natural product chemistry: separation and absolute configuration assignment. Molecules 2018; 23: 492
  • 18 Padula D, Pescitelli G. How and how much molecular conformation affects electronic circular dichroism: the case of 1,1-diarylcarbinols. Molecules 2018; 23: 128
  • 19 Hashimoto M, Wakana D, Ueda M, Kobayashi D, Goda Y, Fujii I. Bioorg. Product identification of non-reducing polyketide synthases with C-terminus methyltransferase domain from Talaromyces stipitatus using Aspergillus oryzae heterologous expression. Med Chem Lett 2015; 25: 1381-1384
  • 20 Dewick PM. Medicinal natural Products: A biosynthetic Approach. 2nd ed.. Chichester: John Wiley & Sons; 2002
  • 21 Li DY, We JX, Hua HM, Li ZL. Antimicrobial constituents from the flowers of Trollius chinensis . J Asian Nat Prod Res 2014; 16: 1018-1023
  • 22 Kuramochi K, Tsubaki K, Kuriyama I, Mizushina Y, Yoshida H, Takeuchi T, Kamisuki S, Sugawara F, Kobayashi S. Synthesis, structure, and cytotoxicity studies of some fungal isochromanes. J Nat Prod 2013; 76: 1737-1745
  • 23 Stevenson AJ, Ager EI, Proctor MA, Skalamera S, Heaton A, Brown D, Gabrielli BG. Mechanism of action of the third generation benzopyrans and evaluation of their broad anticancer activity in vitro and in vivo . Sci Rep 2018; 8: 5144
  • 24 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Wallingford, CT: Gaussian, Inc.; 2009
  • 25 Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution antimicrobial Susceptibility Tests for Bacteria that grow aerobically, Document M7-A6, 6th ed. Wayne, Pennsylvania, EUA: Clinical and Laboratory Standards Institute (CLSI); 2006
  • 26 Clinical and Laboratory Standards Institute (CLSI). Reference Methods for Broth Dilution antifungal Susceptibility Tests for Yeasts, Document M27-A3. Wayne, Pennsylvania, EUA: Clinical and Laboratory Standards Institute (CLSI); 2008
  • 27 Duarte MCT, Figueira GM, Sartoratto A, Rehder VLG, Delarmelina C. Anti-Candida activity of Brazilian medicinal plants. J Ethnopharmacol 2005; 97: 305-311
  • 28 Amorim MR, Hilario F, Sano PT, Bauab TM, Santos LC. Antimicrobial activity of Paepalanthus planifolius and its major components against selected human pathogens. J Braz Chem Soc 2018; 29: 766-774
  • 29 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63