Transfusionsmedizin 2019; 9(01): 45-65
DOI: 10.1055/a-0836-6496
CME-Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Gerinnungsprobleme in der Intensivmedizin – Update 2019

Ludwig Ney
,
Michael Spannagl
Further Information

Publication History

Publication Date:
21 March 2019 (online)

Störungen des Gerinnungssystems und konsekutive hämorrhagische oder thromboembolische Komplikationen sind in der Intensivmedizin ebenso häufige wie ernsthafte Probleme. Ihre frühzeitige Erkennung, korrekte diagnostische Einordnung und gezielte Behandlung sind entscheidende Faktoren für das Outcome.

Kernaussagen
  • Häufige Ursachen einer Gerinnungsstörung im klinischen Alltag sind die Antikoagulation und die Thrombozytenhemmung. Ebenfalls nicht selten ist sie Folge einer Erkrankung, u. a. Leber- und Nierenerkrankungen, hämatologische Erkrankungen oder ein Schock.

  • Die „Lethal Triade“ (Hypothermie, Azidose, Koagulopathie) führt zu einer Gerinnungsstörung, die chirurgische Maßnahmen, eine hämostaseologische Substitution und eine kardiozirkulatorische Stabilisierung erfordert.

  • Das Auftreten diffuser Blutungen ist das wichtigste Leitsymptom einer akuten Koagulopathie.

  • Quick und PTT sind schnell und überall verfügbare Globaltests der Gerinnung. Wegen der unterschiedlichen Empfindlichkeit für direkte orale Antikoagulanzien (DOAK) büßen diese Globaltests eine breite diagnostische Aussagekraft aber zusehends ein.

  • Therapie der Wahl bei akuter, massiver Blutung ist neben Massivtransfusionen eine frühzeitige Substitution von Fibrinogen und Thrombozyten.

  • Klinisch eindeutige Zeichen einer schweren DIC als Versagen des Protein-C-Systems sind Hautnekrosen und digitale Nekrosen an Händen und Füßen, seltener auch von Ohren, Nase und Mamillen. Der Kern der Therapie einer septischen DIC ist die Antikoagulation mit Heparin (UFH oder NMH).

  • Vor allem Autoantikörper gegen die Faktoren des intrinsischen Systems – am häufigsten Faktor VIII (Hemmkörperhämophilie), seltener auch gegen andere Gerinnungsfaktoren – können zu schweren Blutungskomplikationen führen. Diagnostik und Therapie dieser erworbenen Blutungsneigung sind jedoch außerordentlich aufwendig.

  • Die Ursachen des erworbenen Von-Willebrand-Syndroms sind vielfältig, im Blutungsnotfall stehen Von-Willebrand-Faktor-Konzentrate zur Verfügung. Dabei erfolgt die Anwendung – wie so oft in der intensivmedizinischen Hämotherapie – nicht innerhalb des Zulassungsbereichs.

 
  • Literatur

  • 1 Maegele M, Schochl H, Cohen MJ. An update on the coagulopathy of trauma. Shock 2014; 41 (Suppl. 01) 21-25
  • 2 Hardy JF, de Moerloose P, Samama CM. The coagulopathy of massive transfusion. Vox Sang 2005; 89: 123-127
  • 3 Thachil J. Disseminated Intravascular Coagulation: A Practical Approach. Anesthesiology 2016; 125: 230-236
  • 4 Nunez TC, Voskresensky IV, Dossett LA. et al. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)?. J Trauma 2009; 66: 346-352
  • 5 Yucel N, Lefering R, Maegele M. et al. Trauma Associated Severe Hemorrhage (TASH)-Score: probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma. J Trauma 2006; 60: 1228-1236
  • 6 McLaughlin DF, Niles SE, Salinas J. et al. A predictive model for massive transfusion in combat casualty patients. J Trauma 2008; 64: S57-S63
  • 7 Hoffman M, Monroe 3rd DM. A cell-based model of hemostasis. Thromb Haemost 2001; 85: 958-965
  • 8 Blatchford O, Murray WR, Blatchford M. A risk score to predict need for treatment for upper-gastrointestinal haemorrhage. Lancet 2000; 356: 1318-1321
  • 9 Subherwal S, Bach RG, Chen AY. et al. Baseline risk of major bleeding in non-ST-segment-elevation myocardial infarction: the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines) Bleeding Score. Circulation 2009; 119: 1873-1882
  • 10 Kirchhof P, Benussi S, Kotecha D. et al. 2016 ESC Guidelines for the management of atrial fibrillation. Eur Heart J 2016; 37: 2893-2962
  • 11 Pisters R, Lane DA, Nieuwlaat R. et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 2010; 138: 1093-1100
  • 12 OʼBrien EC, Simon DN, Thomas LE. et al. The ORBIT bleeding score: a simple bedside score to assess bleeding risk in atrial fibrillation. Eur Heart J 2015; 36: 3258-3264
  • 13 Hijazi Z, Oldgren J, Lindback J. et al. The novel biomarker-based ABC (age, biomarkers, clinical history) – bleeding risk score for patients with atrial fibrillation: a derivation and validation study. Lancet 2016; 387: 2302-2311
  • 14 Müller MC, Meijers JC, Vroom MB. et al. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care 2014; 18: R30
  • 15 Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg 1995; 81: 360-365
  • 16 Deutsche Gesellschaft für Unfallchirurgie. S3-Leitlinie Polytrauma/Schwerverletzten-Behandlung. Berlin. AWMF 2016. Im Internet: http://www.awmf.org/uploads/tx_szleitlinien/012-019l_S3_Polytrauma_Schwerverletzten-Behandlung_2017-08.pdf Stand: 10.03.2019
  • 17 Spahn DR, Bouillon B, Cerny V. et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care 2013; 17: R76
  • 18 Spinella PC, Perkins JG, Grathwohl KW. et al. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma 2009; 66: S69-S76
  • 19 Holcomb JB, Tilley BC, Baraniuk S. et al. Transfusion of plasma, platelets, and red blood cells in a 1 : 1 : 1 vs. a 1 : 1 : 2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 2015; 313: 471-482
  • 20 Moore HB, Moore EE, Liras IN. et al. Acute Fibrinolysis Shutdown after Injury Occurs Frequently and Increases Mortality: A Multicenter Evaluation of 2,540 Severely Injured Patients. J Am Coll Surg 2016; 222: 347-355
  • 21 Weber CF, Sanders JO, Friedrich K. et al. Stellenwert der Thrombelastometrie für das Monitoring von Faktor XIII. Prospektive Observationsstudie bei neurochirurgischen Patienten. Hämostaseologie 2011; 31: 111-117
  • 22 Kozek-Langenecker S, Sorensen B, Hess JR. et al. Clinical effectiveness of fresh frozen plasma compared with fibrinogen concentrate: a systematic review. Crit Care 2011; 15: R239
  • 23 Estcourt LJ, Stanworth SJ, Doree C. et al. Comparison of different platelet count thresholds to guide administration of prophylactic platelet transfusion for preventing bleeding in people with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2015; (11) CD010983
  • 24 Cannon JW, Khan MA, Raja AS. et al. Damage control resuscitation in patients with severe traumatic hemorrhage: A practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg 2017; 82: 605-617
  • 25 Sperry JL, Guyette FX, Brown JB. et al. Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock. N Engl J Med 2018; 379: 315-326
  • 26 Shackelford SA, Del Junco DJ, Powell-Dunford N. et al. Association of Prehospital Blood Product Transfusion During Medical Evacuation of Combat Casualties in Afghanistan With Acute and 30-Day Survival. JAMA 2017; 318: 1581-1591
  • 27 McQuilten ZK, French CJ, Nichol A. et al. Effect of age of red cells for transfusion on patient outcomes: a systematic review and meta-analysis. Transfus Med Rev 2018; 32: 77-88
  • 28 Davenport RA, Brohi K. Coagulopathy in trauma patients: importance of thrombocyte function?. Curr Opin Anaesthesiol 2009; 22: 261-266
  • 29 Besser MW, Ortmann E, Klein AA. Haemostatic management of cardiac surgical haemorrhage. Anaesthesia 2015; 70 (Suppl. 01) 87-95 e29–e31
  • 30 Shakur H, Roberts I, Bautista R. et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376: 23-32
  • 31 Pollack jr. CV, Reilly PA, van Ryn J. et al. Idarucizumab for Dabigatran Reversal – Full Cohort Analysis. N Engl J Med 2017; 377: 431-441
  • 32 Lu G, DeGuzman FR, Hollenbach SJ. et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med 2013; 19: 446-451
  • 33 Connolly SJ, Crowther M, Eikelboom JW. et al. Full Study Report of Andexanet Alfa for Bleeding Associated with Factor Xa Inhibitors. N Engl J Med 2019; DOI: 10.1056/NEJMoa1814051.
  • 34 Committee for Medicinal Products for Human Use (CHMP). Summary of opinion: Ondexxya – Andexanet alfa. London: European Medicines Agency; 2019
  • 35 Majeed A, Agren A, Holmstrom M. et al. Management of rivaroxaban- or apixaban-associated major bleeding with prothrombin complex concentrates: a cohort study. Blood 2017; 130: 1706-1712
  • 36 Shaw JR, Siegal DM. Pharmacological reversal of the direct oral anticoagulants – A comprehensive review of the literature. Res Pract Thromb Haemost 2018; 2: 251-265
  • 37 Dager WE, Roberts AJ, Nishijima DK. Effect of low and moderate dose FEIBA to reverse major bleeding in patients on direct oral anticoagulants. Thromb Res 2019; 173: 71-76
  • 38 Kruger PC, Hirsh J, Bhagirath VC. et al. In Vitro Reversal of the Anti-Aggregant Effect of Ticagrelor Using Untreated Platelets. Thromb Haemost 2018; 118: 1895-1901
  • 39 Desborough MJ, Oakland K, Brierley C. et al. Desmopressin use for minimising perioperative blood transfusion. Cochrane Database Syst Rev 2017; (07) CD001884
  • 40 Raimondi P, Hylek EM, Aronis KN. Reversal Agents for Oral Antiplatelet and Anticoagulant Treatment During Bleeding Events: Current Strategies. Curr Pharm Des 2017; 23: 1406-1423
  • 41 Frontera JA, Lewin 3rd JJ, Rabinstein AA. et al. Guideline for Reversal of Antithrombotics in Intracranial Hemorrhage: A Statement for Healthcare Professionals from the Neurocritical Care Society and Society of Critical Care Medicine. Neurocrit Care 2016; 24: 6-46
  • 42 Warren BL, Eid A, Singer P. et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001; 286: 1869-1878
  • 43 Gando S, Saitoh D, Ishikura H. et al. A randomized, controlled, multicenter trial of the effects of antithrombin on disseminated intravascular coagulation in patients with sepsis. Crit Care 2013; 17: R297
  • 44 Eichacker PQ, Natanson C, Danner RL. Surviving sepsis – practice guidelines, marketing campaigns, and Eli Lilly. N Engl J Med 2006; 355: 1640-1642
  • 45 Marti-Carvajal AJ, Sola I, Gluud C. et al. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev 2012; (12) CD004388
  • 46 Yamakawa K, Aihara M, Ogura H. et al. Recombinant human soluble thrombomodulin in severe sepsis: a systematic review and meta-analysis. J Thromb Haemost 2015; 13: 508-519
  • 47 Vincent JL, Ramesh MK, Ernest D. et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit Care Med 2013; 41: 2069-2079
  • 48 Dickneite G, Herwald H, Korte W. et al. Coagulation factor XIII: a multifunctional transglutaminase with clinical potential in a range of conditions. Thromb Haemost 2015; 113: 686-697
  • 49 Wettstein P, Haeberli A, Stutz M. et al. Decreased factor XIII availability for thrombin and early loss of clot firmness in patients with unexplained intraoperative bleeding. Anesth Analg 2004; 99: 1564-1569
  • 50 Karkouti K, von Heymann C, Jespersen CM. et al. Efficacy and safety of recombinant factor XIII on reducing blood transfusions in cardiac surgery: a randomized, placebo-controlled, multicenter clinical trial. J Thorac Cardiovasc Surg 2013; 146: 927-939
  • 51 Godje O, Gallmeier U, Schelian M. et al. Coagulation factor XIII reduces postoperative bleeding after coronary surgery with extracorporeal circulation. Thorac Cardiovasc Surg 2006; 54: 26-33
  • 52 Tengborn L, Baudo F, Huth-Kuhne A. et al. Pregnancy-associated acquired haemophilia A: results from the European Acquired Haemophilia (EACH2) registry. BJOG 2012; 119: 1529-1537
  • 53 Sakurai Y, Takeda T. Acquired hemophilia A: a frequently overlooked autoimmune hemorrhagic disorder. J Immunol Res 2014; 2014: 320674
  • 54 Collins P, Baudo F, Huth-Kuhne A. et al. Consensus recommendations for the diagnosis and treatment of acquired hemophilia A. BMC Res Notes 2010; 3: 161
  • 55 Kruse-Jarres R, Kempton CL, Baudo F. et al. Acquired hemophilia A: Updated review of evidence and treatment guidance. Am J Hematol 2017; 92: 695-705
  • 56 Stemberger M, Möhnle P, Tschöp J. et al. Successful bleeding control with recombinant porcine factor VIII in reduced loading doses in two patients with acquired haemophilia A and failure of bypassing agent therapy. Haemophilia 2016; 22: e472-e474
  • 57 Charlebois J, Rivard GE, St-Louis J. Management of acquired hemophilia A: Review of current evidence. Transfus Apher Sci 2018; 57: 717-720
  • 58 Collins P, Baudo F, Knoebl P. et al. Immunosuppression for acquired hemophilia A: results from the European Acquired Haemophilia Registry (EACH2). Blood 2012; 120: 47-55