CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2019; 79(08): 863-872
DOI: 10.1055/a-0828-7968
GebFra Science
Review
Georg Thieme Verlag KG Stuttgart · New York

New Aspects in the Diagnosis and Therapy of Fetal Hypoplastic Left Heart Syndrome

Neue Aspekte in der Diagnostik und Therapie von Feten mit hypoplastischem Linksherzsyndrom
Oliver Graupner
1   Department of Obstetrics and Gynecology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
,
Christian Enzensberger
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
,
Roland Axt-Fliedner
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 29. November 2018
revised 29. Dezember 2018

accepted 30. Dezember 2018

Publikationsdatum:
12. August 2019 (online)

Abstract

Fetal hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with a lethal prognosis without postnatal therapeutic intervention or surgery. The aim of this article is to give a brief overview of new findings in the field of prenatal diagnosis and the therapy of HLHS. As cardiac output in HLHS children depends on the right ventricle (RV), prenatal assessment of fetal RV function is of interest to predict poor functional RV status before the RV becomes the systemic ventricle. Prenatal cardiac interventions such as fetal aortic valvuloplasty and non-invasive procedures such as maternal hyperoxygenation seem to be promising treatment options but will need to be evaluated with regard to long-term outcomes. Novel approaches such as stem cell therapy or neuroprotection provide important clues about the complexity of the disease. New aspects in diagnostics and therapy of HLHS show the potential of a targeted prenatal treatment planning. This could be used to optimize parental counseling as well as pre- and postnatal management of affected children.

Zusammenfassung

Das hypoplastische Linksherzsyndrom (HLHS) ist eine schwerwiegende angeborene Herzerkrankung. Ohne postnatale therapeutische Intervention oder chirurgischen Eingriff ist die Prognose fatal. Dieser Artikel gibt einen kurzen Überblick über neue Erkennntnisse für die pränatale Diagnostik und Therapie von Feten mit HLHS. Da die Herzleistung bei Kindern mit HLHS von der rechten Herzkammer (RV) abhängt, liefert die vorgeburtliche Evaluierung der fetalen RV-Funktion wichtige Informationen zur Prognose einer RV-Dysfunktion, bevor der RV zum Systemventrikel wird. Pränatale Eingriffe am Herzen, wie z. B. die fetale Aorten-Valvuloplastie, sowie nicht-invasive Eingriffe, wie die mütterliche Hyperoxygenierung, sind vielversprechende Behandlungsoptionen. Allerdings müssen diese Ansätze im Hinblick auf die Langzeitergebnisse noch weiter evaluiert werden. Neue Ansätze wie die Stammzelltherapie oder Neuroprotektion liefern wichtige Hinweise für die Komplexität der Erkrankung. Neue Aspekte bei der Diagnostik und Therapie von HLHS weisen auf das Potenzial einer zielgerichteten Planung der vor- und nachgeburtlichen Behandlung hin. Dies könnte zur Optimierung der Elternberatung und des prä- und postnatalen Managements betroffener Kinder führen.

 
  • References

  • 1 Allan LD, Sharland GK, Milburn A. et al. Prospective diagnosis of 1,006 consecutive cases of congenital heart disease in the fetus. J Am Coll Cardiol 1994; 23: 1452-1458
  • 2 Hoffman JI. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 1995; 16: 155-165
  • 3 Ferencz C, Rubin JD, McCarter RJ. et al. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol 1985; 121: 31-36
  • 4 Fyler DC, Buckley LP, Hellenbrand WE. et al. Report of the New England Regional Infant Cardiac care Program. Pediatrics 1980; 65: 375-461
  • 5 Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890-1900
  • 6 Allan LD, Anderson RH, Cook AC. Atresia or absence of the left-sided atrioventricular connection in the fetus: echocardiographic diagnosis and outcome. Ultrasound Obstet Gynecol 1996; 8: 295-302
  • 7 Axt-Fliedner R, Enzensberger C, Fass N. et al. Fetal diagnosis of hypoplastic left heart, associations and outcomes in the current era. Ultraschall Med 2012; 33: E51-E56
  • 8 Akintürk H, Michel-Behnke I, Valeske K. et al. Hybrid transcatheter-surgical palliation: basis for univentricular or biventricular repair: the Giessen experience. Pediatr Cardiol 2007; 28: 79-87
  • 9 Chrisant MR, Naftel DC, Drummond-Webb J. et al. Fate of infants with hypoplastic left heart syndrome listed for cardiac transplantation: a multicenter study. J Heart Lung Transplant 2005; 24: 576-582
  • 10 Karamlou T, Diggs BS, Ungerleider RM. et al. Evolution of treatment options and outcomes for hypoplastic left heart syndrome over an 18-year period. J Thorac Cardiovasc Surg 2010; 139: 119-126
  • 11 Murtuza B, Elliott MJ. Changing attitudes to the management of hypoplastic left heart syndrome: a European perspective. Cardiol Young 2011; 21 (Suppl. 02) 148-158
  • 12 Norwood WI, Lang P, Hansen DD. Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N Engl J Med 1983; 308: 23-26
  • 13 Tworetzky W. Balloon Dilation of Severe Aortic Stenosis in the Fetus: Potential for Prevention of Hypoplastic Left Heart Syndrome: Candidate Selection, Technique, and Results of Successful Intervention. Circulation 2004; 110: 2125-2131
  • 14 Kohl T. Chronic Intermittent Materno-Fetal Hyperoxygenation in Late Gestation May Improve on Hypoplastic Cardiovascular Structures Associated with Cardiac Malformations in Human Fetuses. Pediatr Cardiol 2010; 31: 250-263
  • 15 Donofrio MT, Bremer YA, Schieken RM. et al. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol 2003; 24: 436-443
  • 16 Goldberg CS, Schwartz EM, Brunberg JA. et al. Neurodevelopmental outcome of patients after the fontan operation: A comparison between children with hypoplastic left heart syndrome and other functional single ventricle lesions. J Pediatr 2000; 137: 646-652
  • 17 Kaltman JR, Di H, Tian Z. et al. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol 2005; 25: 32-36
  • 18 Miller SP, McQuillen PS, Hamrick S. et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007; 357: 1928-1938
  • 19 Sarajuuri A, Jokinen E, Puosi R. et al. Neurodevelopment in children with hypoplastic left heart syndrome. J Pediatr 2010; 157: 414-420
  • 20 Natarajan S, Szwast A, Tian Z. et al. Right ventricular mechanics in the fetus with hypoplastic left heart syndrome. J Am Soc Echocardiogr 2013; 26: 515-520
  • 21 Brooks PA, Khoo NS, Mackie AS. et al. Right ventricular function in fetal hypoplastic left heart syndrome. J Am Soc Echocardiogr 2012; 25: 1068-1074
  • 22 Szwast A, Tian Z, McCann M. et al. Right ventricular performance in the fetus with hypoplastic left heart syndrome. Ann Thorac Surg 2009; 87: 1214-1219
  • 23 Axt-Fliedner R, Graupner O, Degenhardt J. et al. Evaluation of right ventricular function in the fetus with hypoplastic left heart using tissue Doppler techniques. Ultrasound Obstet Gynecol 2014; 45: 670-677
  • 24 Graupner O, Enzensberger C, Wieg L. et al. Evaluation of right ventricular function in fetal hypoplastic left heart syndrome by color tissue Doppler imaging. Ultrasound Obstet Gynecol 2016; 47: 732-738
  • 25 Graupner O, Enzensberger C, Wieg L. et al. Endocardial fibroelastosis of the left ventricle affects right ventricular performance in fetuses with hypoplastic left heart syndrome: A prospective study using M-Mode, PW- and Tissue Doppler techniques. Ultraschall Med 2018; 39: 413-421
  • 26 Rychik J. Hypoplastic left Heart Syndrome. In: Rychik J, Tian Z. eds. Fetal cardiovascular Imaging: a Disease based Approach. Philadelphia: Elsevier Saunders; 2012: 231-241
  • 27 Altmann K, Printz BF, Solowiejczky DE. et al. Two-dimensional echocardiographic assessment of right ventricular function as a predictor of outcome in hypoplastic left heart syndrome. Am J Cardiol 2000; 86: 964-968
  • 28 Axt-Fliedner R, Kreiselmaier P, Schwarze A. et al. Development of hypoplastic left heart syndrome after diagnosis of aortic stenosis in the first trimester by early echocardiography. Ultrasound Obstet Gynecol 2006; 28: 106-109
  • 29 Enzensberger C, Vogel M, Degenhardt J. et al. Fetal pulmonary venous flow and restrictive foramen ovale in hypoplastic left heart. Ultraschall Med 2012; 33: E38-E45
  • 30 Furck AK, Uebing A, Hansen JH. et al. Outcome of the Norwood operation in patients with hypoplastic left heart syndrome: a 12-year single-center survey. J Thorac Cardiovasc Surg 2010; 139: 359-365
  • 31 Hartge DR, Weichert J, Krapp M. et al. Results of early foetal echocardiography and cumulative detection rate of congenital heart disease. Cardiol Young 2011; 21: 505-517
  • 32 Khairy P, Fernandes SM, Mayer jr. JE. et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 2008; 117: 85-92
  • 33 Tei C, Nishimura RA, Seward JB. et al. Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr 1997; 10: 169-178
  • 34 Aoki M, Harada K, Ogawa M. et al. Quantitative assessment of right ventricular function using doppler tissue imaging in fetuses with and without heart failure. J Am Soc Echocardiogr 2004; 17: 28-35
  • 35 Enzensberger C, Fischer S, Graupner O. et al. Evaluation of right ventricular myocardial contraction in fetuses with Hypoplastic Left Heart using 2D Speckle Tracking technique. Ultrasound Obstet Gynecol 2018; 52 (Suppl. 01) 66-137
  • 36 Petko C, Uebing A, Furck A. et al. Changes of right ventricular function and longitudinal deformation in children with hypoplastic left heart syndrome before and after the Norwood operation. J Am Soc Echocardiogr 2011; 24: 1226-1232
  • 37 Zaidi SJ, Lefaiver CA, Muangmingsuk S. et al. Right Ventricular Longitudinal Shortening Before and After Stage I Surgical Palliation Correlates with Outcomes. Pediatr Cardiol 2018; 39: 526-532
  • 38 Zaidi SJ, Penk J, Cui VW. et al. Right Ventricular Systolic Function Parameters in Hypoplastic Left Heart Syndrome. Pediatr Cardiol 2018; DOI: 10.1007/s00246-018-1912-x.
  • 39 Arzt W, Wertaschnigg D, Veit I. et al. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: experience and results of 24 procedures. Ultrasound Obstet Gynecol 2011; 37: 689-695
  • 40 McElhinney DB, Marshall AC, Wilkins-Haug LE. et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation 2009; 120: 1482-1490
  • 41 Moon-Grady AJ, Morris SA, Belfort M. et al. International Fetal Cardiac Intervention Registry: a worldwide collaborative description and preliminary outcomes. J Am Coll Cardiol 2015; 66: 388-399
  • 42 Kovacevic A, Öhman A, Tulzer G. et al. Fetal hemodynamic response to aortic valvuloplasty and postnatal outcome: a European multicenter study. Ultrasound Obstet Gynecol 2018; 52: 221-229
  • 43 Wohlmuth C, Wertaschnigg D, Wieser I. et al. Tissue Doppler imaging in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome before and after fetal aortic valvuloplasty. Ultrasound Obstet Gynecol 2016; 47: 608-615
  • 44 Ishii T, McElhinney DB, Harrild DM. et al. Ventricular strain in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome before and after prenatal aortic valvuloplasty. Fetal Diagn Ther 2014; 35: 18-26
  • 45 Rychik J, Rome JJ, Collins MH. et al. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol 1999; 34: 554-560
  • 46 Vlahos AP. Hypoplastic Left Heart Syndrome With Intact or Highly Restrictive Atrial Septum: Outcome After Neonatal Transcatheter Atrial Septostomy. Circulation 2004; 109: 2326-2330
  • 47 Schidlow DN, Freud L, Friedman K. et al. Fetal interventions for structural heart disease. Echocardiography 2017; 34: 1834-1841
  • 48 Glatz JA, Tabbutt S, Gaynor JW. et al. Hypoplastic left heart syndrome with atrial level restriction in the era of prenatal diagnosis. Ann Thorac Surg 2007; 84: 1633-1638
  • 49 Szwast A, Tian Z, McCann M. et al. Vasoreactive response to maternal hyperoxygenation in the fetus with hypoplastic left heart syndrome. Circ Cardiovasc Imaging 2010; 3: 172-178
  • 50 Olivieri L, Ratnayaka K, Levy RJ. et al. Hypoplastic left heart syndrome with intact atrial septum sequelae of left atrial hypertension in utero. J Am Coll Cardiol 2011; 57: e369
  • 51 Marshall AC, Levine J, Morash D. et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat Diagn 2008; 28: 1023-1028
  • 52 Lara DA, Morris SA, Maskatia SA. et al. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol 2016; 48: 365-372
  • 53 Co-Vu J, Lopez-Colon D, Vyas HV. et al. Maternal hyperoxygenation: A potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiography 2017; 34: 1822-1833
  • 54 Enzensberger C, Axt-Fliedner R, Degenhardt J. et al. Pulmonary vasoreactivity to materno-fetal hyperoxygenation testing in fetuses with hypoplastic left heart. Ultraschall Med 2016; 37: 195-200
  • 55 Kohl T. Effects of maternal-fetal hyperoxygenation on aortic arch flow in a late-gestation human fetus with closed oval foramen at risk for coarctation. J Thorac Cardiovasc Surg 2011; 142: e67-e69
  • 56 Borik S, Macgowan CK, Seed M. Maternal hyperoxygenation and foetal cardiac MRI in the assessment of the borderline left ventricle. Cardiol Young 2015; 25: 1214-1217
  • 57 Channing A, Szwast A, Natarajan S. et al. Maternal hyperoxygenation improves left heart filling in fetuses with atrial septal aneurysm causing impediment to left ventricular inflow. Ultrasound Obstet Gynecol 2015; 45: 664-669
  • 58 Schidlow DN, Donofrio MT. Prenatal Maternal Hyperoxygenation Testing and Implications for Critical Care Delivery Planning among Fetuses with Congenital Heart Disease: Early Experience. Am J Perinatol 2018; 35: 16-23
  • 59 Gibbs JL, Wren C, Watterson KG. et al. Stenting of the arterial duct combined with banding of the pulmonary arteries and atrial septectomy or septostomy: a new approach to palliation for the hypoplastic left heart syndrome. Br Heart J 1993; 69: 551-555
  • 60 Pawade A, Waterson K, Laussen P. et al. Cardiopulmonary bypass in neonates weighing less than 2.5 kg: analysis of the risk factors for early and late mortality. J Cardiac Surg 1993; 8: 1-8
  • 61 Akintuerk H, Michel-Behnke I, Valeske K. et al. Stenting of the arterial duct and banding of the pulmonary arteries: basis for combined Norwood stage I and II repair in hypoplastic left heart. Circulation 2002; 105: 1099-1103
  • 62 Galantowicz M, Cheatham JP, Phillips A. et al. Hybrid approach for hypoplastic left heart syndrome: intermediate results after the learning curve. Ann Thorac Surg 2008; 85: 2063-2071
  • 63 Brescia AA, Jureidini S, Danon S. et al. Hybrid versus Norwood procedure for hypoplastic left heart syndrome: contemporary series from a single center. J Thorac Cardiovasc Surg 2014; 147: 1777-1782
  • 64 Davies RR, Radtke WA, Klenk D. et al. Bilateral pulmonary arterial banding results in an increased need for subsequent pul- monary artery interventions. J Thorac Cardiovasc Surg 2014; 147: 706-712
  • 65 Dodge-Khatami A, Chancellor WZ, Gupta B. et al. Achieving benchmark results for neonatal palliation of hypoplastic left heart syndrome and related anomalies in an emerging program. World J Pediatr Congenit Heart Surg 2015; 6: 393-400
  • 66 Lloyd DF, Cutler L, Tibby SM. et al. Analysis of preoperative condition and interstage mortality in Norwood and hybrid procedures for hypoplastic left heart syndrome using the aristotle scoring system. Heart 2014; 100: 775-780
  • 67 Cao JY, Lee SY, Phan K. et al. Early Outcomes of Hypoplastic Left Heart Syndrome Infants: Meta-Analysis of Studies Comparing the Hybrid and Norwood Procedures. World J Pediatr Congenit Heart Surg 2018; 9: 224-233
  • 68 Schranz D, Bauer A, Reich B. et al. Fifteen-year single center experience with the “Giessen Hybrid” approach for hypoplastic left heart and variants: current strategies and outcomes. Pediatr Cardiol 2015; 36: 365-373
  • 69 Yerebakan C, Murray J, Valeske K. et al. Long-term results of biventricular repair after initial Giessen hybrid approach for hypoplastic left heart variants. J Thorac Cardiovasc Surg 2015; 149: 1112-1120
  • 70 Latus H, Nassar MS, Wong J. et al. Ventricular function and vascular dimensions after Norwood and hybrid palliation of hypoplastic left heart syndrome. Heart 2018; 104: 244-252
  • 71 Bittle GJ, Morales D, Deatrick KB. et al. Stem Cell Therapy for Hypoplastic Left Heart Syndrome: Mechanism, Clinical Application, and Future Directions. Circ Res 2018; 123: 288-300
  • 72 Si MS, Ohye RG. Stem cell therapy for the systemic right ventricle. Expert Rev Cardiovasc Ther 2017; 15: 813-823
  • 73 Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 2014; 115: 176-188
  • 74 Schreckenberg R, Rebelo M, Deten A. et al. Specific mechanisms underlying right heart failure: the missing upregulation of superoxide dismutase-2 and its decisive role in antioxidative defense. Antioxid Redox Signal 2015; 23: 1220-1232
  • 75 Salih C, Sheppard MN, Ho SY. Morphometry of coronary capillaries in hypoplastic left heart syndrome. Ann Thorac Surg 2004; 77: 903-907
  • 76 Sutendra G, Dromparis P, Paulin R. et al. A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med (Berl) 2013; 91: 1315-1327
  • 77 Ptaszek LM, Mansour M, Ruskin JN. et al. Towards regenerative therapy for cardiac disease. Lancet 2012; 379: 933-942
  • 78 Hu S, Liu S, Zheng Z. et al. Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol 2011; 57: 2409-2415
  • 79 Kimura N. Regenerative Therapy for Patients with Congenital Heart Disease. Keio J Med 2018; DOI: 10.2302/kjm.2018-0002-IR.
  • 80 Ishigami S, Ohtsuki S, Tarui S. et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial. Circ Res 2015; 116: 653-664
  • 81 Ishigami S, Ohtsuki S, Eitoku T. et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (Cardiac Progenitor Cell Infusion to Treat Univentricular Heart Disease) randomized phase 2 trial. Circ Res 2017; 120: 1162-1173
  • 82 Kaushal S, Wehman B, Pietris N. et al. Study design and rationale for ELPIS: a phase I/IIb randomized pilot study of allogeneic human mesenchymal stem cell injection in patients with hypoplastic left heart syndrome. Am Heart J 2017; 192: 48-56
  • 83 Oh H. Cell therapy trials in congenital heart disease. Circ Res 2017; 120: 1353-1366
  • 84 Tarui S, Ishigami S, Ousaka D. et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial. J Thorac Cardiovasc Surg 2015; 150: 1198-1207 1208.e1–1208.e2
  • 85 Vorisek C, Shimada S, Axt-Fliedner R. et al. [Inhibition of endocardial fibroelastosis in unborn children with hypoplastic left heart in the cell culture model]. Z Geburtshilfe Neonatol 2015; 219 - P08_7
  • 86 Xu X, Friehs I, Zhong Hu T. et al. Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition. Circ Res 2015; 116: 857-866
  • 87 Costamagna D, Quattrocelli M, van Tienen F. et al. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. J Mol Cell Biol 2016; 8: 73-87
  • 88 Majnemer A, Limperopoulos C, Shevell M. et al. Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. J Pediatr 2006; 148: 72-77
  • 89 Limperopoulos C, Majnemer A, Shevell M. et al. Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery. J Pediatr 2000; 137: 638-645
  • 90 Limperopoulos C, Majnemer A, Shevell MI. et al. Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr 2002; 141: 51-58
  • 91 Masoller N, Martínez JM, Gómez O. et al. Evidence of second-trimester changes in head biometry and brain perfusion in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 2014; 44: 182-187
  • 92 Graupner O, Koch J, Enzensberger C. et al. Head biometry in fetuses with isolated congenital heart disease. Ultraschall Med 2018; DOI: 10.1055/a-0796-6502.
  • 93 Khalil A, Suff N, Thilaganathan B. et al. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2014; 43: 14-24
  • 94 Mahle WT, Tavani F, Zimmerman RA. et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002; 106 (12 Suppl. 1): 109-114
  • 95 Miller SP, McQuillen PS, Hamrick S. et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007; 357: 1928-1938
  • 96 Limperopoulos C, Tworetzky W, McElhinney DB. et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 2010; 121: 26-33
  • 97 Kuhn V, Carpenter JL, Tague L. et al. Brain Injury Scores of Neonates with Complex Congenital Heart Disease. Thorac Cardiovasc Surg; 2018 (abstract accepted for publication as conference paper)
  • 98 Berg C, Gembruch O, Gembruch U. et al. Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect?. Ultrasound Obstet Gynecol 2009; 34: 666-672
  • 99 Donofrio MT, Bremer YA, Schieken RM. et al. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol 2003; 24: 436-443
  • 100 Kaltman JR, Di H, Tian Z. et al. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol 2005; 25: 32-36
  • 101 Yamamoto Y, Khoo NS, Brooks PA. et al. Severe left heart obstruction with retrograde arch flow importantly influences fetal cerebral and placental blood flow. Ultrasound Obstet Gynecol 2013; 42: 294-299
  • 102 Graupner O, Koch J, Enzensberger C. et al. Cerebroplacental and maternal hemodynamics in pregnancies complicated by congenital heart disease of the fetus. Ultraschall Med; 2018 (submitted for publication)
  • 103 Szwast A, Tian Z, McCann M. et al. Comparative analysis of cerebrovascular resistance in fetuses with single-ventricle congenital heart disease. Ultrasound Obstet Gynecol 2012; 40: 62-67
  • 104 Sun L, Macgowan CK, Sled JG. et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 2015; 131: 1313-1323
  • 105 Masoller N, Sanz-CortéS M, Crispi F. et al. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth. Ultrasound Obstet Gynecol 2016; 47: 65-73
  • 106 Huch A, Huch R, Schneider H. et al. Continuous transcutaneous monitoring of fetal oxygen tension during labour. Br J Obstet Gynaecol 1977; 84 (Suppl. 01) 1-39
  • 107 Nicolaides KH, Campbell S, Bradley RJ. et al. Maternal oxygen therapy for intrauterine growth retardation. Lancet 1987; 1: 942-945
  • 108 Parpaglioni R, Capogna G, Celleno D. et al. Intraoperative fetal oxygen saturation during Caesarean section: general anaesthesia using sevoflurane with either 100 % oxygen or 50 % nitrous oxide in oxygen. Eur J Anaesthesiol 2002; 19: 115-118
  • 109 Willcourt RJ, King JC, Queenan JT. Maternal oxygenation administration and the fetal transcutaneous PO2. Am J Obstet Gynecol 1983; 146: 714-715
  • 110 Szwast A, Putt M, Gaynor JW. et al. Cerebrovascular response to maternal hyperoxygenation in fetuses with hypoplastic left heart syndrome depends on gestational age and baseline cerebrovascular resistance. Ultrasound Obstet Gynecol 2018; 52: 473-478 doi:10.1002/uog.18919
  • 111 Edwards LA, Lara DA, Sanz Cortes M. et al. Chronic Maternal Hyperoxygenation and Effect on Cerebral and Placental Vasoregulation and Neurodevelopment in Fetuses with Left Heart Hypoplasia. Fetal Diagn Ther 2018; 17: 1-13
  • 112 Morris SA, Ethen MK, Penny DJ. et al. Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome. Circulation 2014; 129: 285-292
  • 113 Brown DW, Cohen KE, OʼBrien P. et al. Impact of prenatal diagnosis in survivors of initial palliation of single ventricle heart disease: analysis of the National Pediatric Cardiology Quality Improvement Collaborative database. Pediatr Cardiol 2015; 36: 314-321
  • 114 Allen RH, Benson CB, Haug LW. Pregnancy outcome of fetuses with a diagnosis of hypoplastic left ventricle on prenatal sonography. J Ultrasound Med 2005; 24: 1199-1203
  • 115 Thakur V, Munk N, Mertens L. et al. Does prenatal diagnosis of hypoplastic left heart syndrome make a difference? – a systematic review. Prenat Diagn 2016; 36: 854-863
  • 116 Pasquali SK, Ohye RG, Lu M. et al. Variation in perioperative care across centers for infants undergoing the Norwood procedure. J Thorac Cardiovasc Surg 2012; 144: 915-921
  • 117 Feinstein JA, Benson DW, Dubin AM. et al. Hypoplastic left heart syndrome: Current considerations and expectations. J Am Coll Cardiol 2012; 59: S1-S42
  • 118 Ghanayem NS, Hoffman GM, Mussatto KA. et al. Perioperative monitoring in high-risk infants after stage 1 palliation of univentricular congenital heart disease. J Thorac Cardiovasc Surg 2010; 140: 857-863
  • 119 Greenleaf CE, Urencio JM, Salazar JD. et al. Hypoplastic left heart syndrome: current perspectives. Transl Pediatr 2016; 5: 142-147
  • 120 Cross RR, Harahsheh AS, McCarter R. et al. Identified mortality risk factors associated with presentation, initial hospitalization, and interstage period for the Norwood operation in a multi-center registry: a report from the National Pediatric Cardiology-Quality Improvement Collaborative. Cardiol Young 2014; 24: 253-262
  • 121 Simsic JM, Bradley SM, Stroud MR. et al. Risk factors for interstage death after the Norwood procedure. Pediatr Cardiol 2005; 26: 400-403
  • 122 Knirsch W, Bertholdt S, Stoffel G. et al. Clinical course and interstage monitoring after the Norwood and Hybrid procedures for hypoplastic left heart syndrome. Pediatr Cardiol 2014; 35: 851-856
  • 123 Castellanos DA, Herrington C, Adler S. et al. Home monitoring program reduces mortality in high risk socioeconomic single-ventricle patients. Pediatr Cardiol 2016; 37: 1575-1580
  • 124 Nieves JA, Uzark K, Rudd NA. et al. Interstage Home Monitoring After Newborn First-Stage Palliation for Hypoplastic Left Heart Syndrome: Family Education Strategies. Crit Care Nurse 2017; 37: 72-88
  • 125 Ghanayem NS, Hoffman GM, Mussatto KA. et al. Home surveillance program prevents interstage mortality after the Norwood procedure. J Thorac Cardiovasc Surg 2003; 126: 1367-1377
  • 126 Rudd N, Fommelt MA, Hehir DA. et al. Improving interstage survival after Norwood operation: Outcomes following 10 years of home monitoring. J Thorac Cardiovasc Surg 2014; 148: 1540-1547