Nuklearmedizin 2019; 58(01): 39-49
DOI: 10.1055/a-0810-0174
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Normal Values for Parotid Gland and Submandibular-Sublingual Salivary Gland Complex Uptake of 99mTechnetium Pertechnetate using SPECT in Mice with Respect to Age, Sex, and Circadian Rhythm

Normwerte für den Uptake von 99mTechnetium-Pertechnetat in der Parotis und dem Submandibular-Sublingualen-Speicheldrüsenkomplex bei der Maus in Abhängigkeit von Alter, Geschlecht und circadianem Rhythmus
Eleonore L. Huang
1   Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Germany
,
Ingo G. Steffen
1   Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Germany
,
Mathias Lukas
1   Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Germany
,
Kai Huang
1   Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Germany
,
Joerg R. Aschenbach
2   Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Germany
,
Janet F. Eary
3   US National Institutes of Health/NCI/DCTD
,
Winfried Brenner
1   Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Germany
,
Nicola Beindorff
4   Berlin Experimental Radionuclide Imaging Center (BERIC), Charité – Universitätsmedizin Berlin, Germany
› Author Affiliations
Further Information

Publication History

09/14/2018

11/30/2018

Publication Date:
15 February 2019 (online)

Abstract

Aim The aim of this study was to establish normal values for parotid gland (PG) and submandibular-sublingual salivary gland complex (SSC) uptake of 99mtechnetium pertechnetate (99mTcO4) as a function of age, sex and circadian rhythm in mice.

Methods In 12 female (F) and 12 male (M) C57BL/6N mice, nine consecutive SPECT images of 10 min each were acquired as dynamic acquisitions beginning 5 min after intravenous injection of 80 MBq 99mTcO4. Each mouse was imaged in follow-up studies at 1, 3, 6, 12 and 24 months of age. In order to assess for physiologic changes related to circadian rhythm, animals were imaged during light (sleeping phase) as well as during night conditions (awake phase). The percentage tracer uptake of the injected activity is expressed as median %ID.

Results Maximum 99mTcO4 uptake occurred earlier in PG at 11 min compared to SSC at 79 min (p < 0.001). No significant effect of circadian rhythm was observed in PG (p = 0.64) and SSC uptake (p = 0.27). With aging, 99mTcO4 uptake significantly decreased for PG (p < 0.001) while it increased for SSC (p < 0.001). F (0.5) had a significantly higher PG uptake than M (0.3; p < 0.001) up to an age of 24 months. However, SSC uptake of F (4.6) was higher than that of M (3.8; p = 0.014) only at the age of 1 month. Thereafter, F (5.6) had lower SSC uptake than M (9.2; p < 0.001) from 3 months onwards. Normalizing %ID to gland volume showed that F had a significantly higher uptake (%ID/mm3) in both PG (F 0.013; M 0.007; p < 0.001) and in SSC (F 0.110; M 0.075; p < 0.001).

Conclusion Uptake patterns differed among PG and SSC with a significant impact of age and sex while circadian rhythm had no significant influence. Therefore, design of salivary gland studies in mice using 99mTcO4 should consider age and sex as relevant factors.

Zusammenfassung

Ziel Ziel dieser Studie war die Erhebung von Normwerten für den 99mTechnetium-Pertechnetat (99mTcO4) Uptake der Parotis (PG) und des Submandibular-Sublingualen-Speicheldrüsenkomplexes (SSC) in Abhängigkeit von Alter, Geschlecht und circadianem Rhythmus bei der Maus.

Methoden Bei 12 weiblichen (F) und 12 männlichen (M) C57BL/6N Mäusen wurden neun konsekutive SPECT Aufnahmen von jeweils 10 min Dauer 5 min nach intravenöser Injektion von 80 MBq 99mTcO4 durchgeführt. Jede Maus wurde mit 1, 3, 6, 12 und 24 Monaten untersucht. Um Veränderungen auf Grund des circadianen Rhythmus zu erfassen, erfolgte die Untersuchung der Tiere während der Hellphase (Schlafphase) sowie während der Dunkelphase (Wachphase). Der prozentuale Tracer Uptake ist als Median %ID der injizierten Aktivität angegeben.

Ergebnisse Der maximale 99mTcO4 Uptake lag mit 11 min bei der PG früher im Vergleich zum SSC mit 79 min (p < 0,001). Weder PG (p = 0,64) noch SSC (p = 0,27) zeigten einen signifikanten Unterschied in Abhängigkeit vom circadianen Rhythmus.

Mit dem Alter fiel der 99mTcO4 Uptake der PG signifikant ab (p < 0,001), während er im SSC (p < 0,001) anstieg. Im Vergleich zu M hatten F bis zu einem Alter von 2 Jahren einen signifikant höheren Uptake der PG (F 0,5; M 0,3; p < 0,001). Dagegen war der SSC-Uptake bei F nur im Alter von 1 Monat höher (F 4,6; M 3,8; p = 0,014). Ab einem Alter von 3 Monaten konnte bei F ein geringerer Uptake im SSC beobachtet werden (F 5,6; M 9,2; p < 0,001). Bei Normierung des %ID auf das Speicheldrüsenvolumen zeigten F einen signifikant höheren Uptake (%ID/mm3) sowohl in der PG (F 0,013; M 0,007; p < 0,001) als auch im SSC (F 0,110; M 0,075; p < 0,001).

Schlussfolgerung PG und SSC zeigten Unterschiede im Uptake in Abhängigkeit von Alter und Geschlecht, während der circadiane Rhythmus keinen signifikanten Einfluss hatte. Folglich sollten beim Studiendesign mit 99mTcO4 bei Speicheldrüsenuntersuchungen der Maus Alter und Geschlecht als wichtige Einflussfaktoren berücksichtigt werden.

 
  • References

  • 1 Ahmadzadehfar H, Eppard E, Kurpig S. et al. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget 2016; 7 (11) 12477-12488
  • 2 Atkinson WB, Wilson F, Coates S. The nature of the sexual dimorphism of the submandibular gland of the mouse. Endocrinology 1959; 65 (01) 114-117
  • 3 Azevedo LR, Damante JH, Lara VS. et al. Age-related changes in human sublingual glands: a post mortem study. Arch Oral Biol 2005; 50 (06) 565-574
  • 4 Beindorff N, Bartelheimer A, Huang K. et al. Normal Values of Thyroid Uptake of 99mTechnetium Pertechnetate SPECT in Mice with Respect to Age, Sex, and Circadian Rhythm. Nuklearmedizin 2018; 57 (05) 181-189
  • 5 Bohuslavizki KH, Brenner W, Klutmann S. et al. Radioprotection of salivary glands by amifostine in high-dose radioiodine therapy. J Nucl Med 1998; 39 (07) 1237-1242
  • 6 Brandt MP, Kloos RT, Shen DH. et al. Micro-single-photon emission computed tomography image acquisition and quantification of sodium-iodide symporter-mediated radionuclide accumulation in mouse thyroid and salivary glands. Thyroid 2012; 22 (06) 617-624
  • 7 Caramia F. Ultrastructure of mouse submaxillary gland. I. Sexual differences. J Ultrastruct Res 1966; 16 (05) 505-523
  • 8 Choe JK, Khan-Dawood FS, Dawood MY. Progesterone and estradiol in the saliva and plasma during the menstrual cycle. Am J Obstet Gynecol 1983; 147 (05) 557-562
  • 9 Choi JS, Park IS, Kim SK. et al. Analysis of age-related changes in the functional morphologies of salivary glands in mice. Arch Oral Biol 2013; 58 (11) 1635-1642
  • 10 Cohen B, Logothetopoulos JH, Myant NB. Autoradiographic localization of iodine-131 in the salivary glands of the hamster. Nature 1955; 176 (4496) 1268-1269
  • 11 Cohen B, Myant NB. Concentration of salivary iodide: a comparative study. J Physiol 1959; 145 (03) 595-610
  • 12 Dawes C. Circadian rhythms in human salivary flow rate and composition. J Physiol 1972; 220 (03) 529-545
  • 13 Dawes C. Circadian rhythms in the flow rate and composition of unstimulated and stimulated human submandibular saliva. J Physiol 1975; 244 (02) 535-548
  • 14 Denny PC, Chai Y, Pimprapaiporn W. et al. Three-dimensional reconstruction of adult female mouse submandibular gland secretory structures. Anat Rec 1990; 226 (04) 489-500
  • 15 Fekete E. Histology. Biology of the laboratory mouse. Snell GD. ed. Blakiston, Philadelphia: 1941: 89-167
  • 16 Firat F, Cermik TF, Sarikaya A. et al. Effects of gender and age on the quantitative parameters of [99mTc]pertechnetate salivary gland scintigraphy in normal subjects. Nucl Med Commun 2006; 27 (05) 447-453
  • 17 Gresik EW. The postnatal development of the sexually dimorphic duct system and of amylase activity in the submandibular glands of mice. Cell Tissue Res 1975; 157 (03) 411-422
  • 18 Grunberg H, Borner W. 99mTc-pertechnetate scintiscanning in the diagnosis of the diseases of the salivary glands. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 1966; 187 (02) 714-718
  • 19 Helman J, Turner RJ, Fox PC. et al. 99mTc-pertechnetate uptake in parotid acinar cells by the Na+/K+/Cl- co-transport system. J Clin Invest 1987; 79 (05) 1310-1313
  • 20 Hermann GA, Vivino FB, Shnier D. et al. Variability of quantitative scintigraphic salivary indices in normal subjects. J Nucl Med 1998; 39 (07) 1260-1263
  • 21 Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent 2001; 85 (02) 162-169
  • 22 Inoue H, Ono K, Masuda W. et al. Gender difference in unstimulated whole saliva flow rate and salivary gland sizes. Arch Oral Biol 2006; 51 (12) 1055-1060
  • 23 Ishii H, Nakagawa Y. Stress response to surgical procedures in the submandibular region and its influence on salivary secretion in mice. Arch Oral Biol 2001; 46 (04) 387-390
  • 24 Jonjic S. Surgical removal of mouse salivary glands. Curr Protoc Immunol. 2001 Chapter 1: Unit 1.11
  • 25 Josefsson M, Grunditz T, Ohlsson T. et al. Sodium/iodide-symporter: distribution in different mammals and role in entero-thyroid circulation of iodide. Acta Physiol Scand 2002; 175 (02) 129-137
  • 26 Knudsen J, Nauntofte B, Josipovic M. et al. Effects of isoflurane anesthesia and pilocarpine on rat parotid saliva flow. Radiat Res 2011; 176 (01) 84-88
  • 27 Krane CM, Towne JE, Menon AG. Cloning and characterization of murine Aqp5: evidence for a conserved aquaporin gene cluster. Mamm Genome 1999; 10 (05) 498-505
  • 28 Kratochwil C, Bruchertseifer F, Rathke H. et al. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J Nucl Med 2017; 58 (10) 1624-1631
  • 29 Lacassagne A. Dimorphisme sexuel de la glande sous-maxillaire chez la souris. Compt. Rend. Soc Biol 1940; 133: 180-181
  • 30 Lee MD, Bhakta KY, Raina S. et al. The human Aquaporin-5 gene. Molecular characterization and chromosomal localization. J Biol Chem 1996; 271 (15) 8599-8604
  • 31 Logothetopoulos JH, Myant NB. Concentration of radio-iodide and 35-S-thiocyanate by the salivary glands. J Physiol 1956; 134 (01) 189-194
  • 32 Loutfi I, Nair MK, Ebrahim AK. Salivary gland scintigraphy: the use of semiquantitative analysis for uptake and clearance. J Nucl Med Technol 2003; 31 (02) 81-85
  • 33 Mishkin FS. Radionuclide salivary gland imaging. Semin Nucl Med 1981; 11 (04) 258-265
  • 34 Ozono S, Onozuka M, Sato K. et al. Immunohistochemical evidence for the presence of progesterone receptor in rat submandibular glands. Cell Struct Funct 1991; 16 (06) 511-513
  • 35 Papagerakis S, Zheng L, Schnell S. et al. The circadian clock in oral health and diseases. J Dent Res 2014; 93 (01) 27-35
  • 36 Percival RS, Challacombe SJ, Marsh PD. Flow rates of resting whole and stimulated parotid saliva in relation to age and gender. J Dent Res 1994; 73 (08) 1416-1420
  • 37 Pfestroff A, Muller F, Librizzi D. et al. Scintigraphic assessment of salivary gland function in a rat model. In Vivo 2010; 24 (05) 681-685
  • 38 Proctor GB. The physiology of salivary secretion. Periodontol 2000 2016; 70 (01) 11-25
  • 39 Rahbar K, Ahmadzadehfar H, Kratochwil C. et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J Nucl Med 2017; 58 (01) 85-90
  • 40 Raina S, Preston GM, Guggino WB. et al. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem 1995; 270 (04) 1908-1912
  • 41 Raynaud J. The Action of Thyroid and Adrenal Glands on the Submaxillary Gland of Mice. Int Ser Monogr Oral Biol 1964; 3: 47-62
  • 42 Roberts ML. Testosterone-induced accumulation of epidermal growth factor in the submandibular salivary glands of mice, assessed by radioimmunoassay. Biochem Pharmacol 1974; 23 (23) 3305-3308
  • 43 Sashima M. Age-related changes of rat submandibular gland: a morphometric and ultrastructural study. J Oral Pathol 1986; 15 (10) 507-512
  • 44 Scott J. Degenerative changes in the histology of the human submandibular salivary gland occurring with age. J Biol Buccale 1977; 5 (04) 311-319
  • 45 Scott J. Qualitative and quantitative observations on the histology of human labial salivary glands obtained post mortem. J Biol Buccale 1980; 8 (03) 187-200
  • 46 Scott J. Quantitative age changes in the histological structure of human submandibular salivary glands. Arch Oral Biol 1977; 22 (03) 221-227
  • 47 Scott J, Flower EA, Burns J. A quantitative study of histological changes in the human parotid gland occurring with adult age. J Oral Pathol 1987; 16 (10) 505-510
  • 48 Shannon IL, Suddick RP. Effects of light and darkness on human parotid salivary flow rate and chemical composition. Arch Oral Biol 1973; 18 (05) 601-608
  • 49 Treister NS, Richards SM, Lombardi MJ. et al. Sex-related differences in gene expression in salivary glands of BALB/c mice. J Dent Res 2005; 84 (02) 160-165
  • 50 Vissink A, Spijkervet FK, Van Nieuw Amerongen A. Aging and saliva: a review of the literature. Spec Care Dentist 1996; 16 (03) 95-103
  • 51 Weiss SJ, Philp NJ, Grollman EF. Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology 1984; 114 (04) 1090-1098