Z Orthop Unfall 2019; 157(05): 540-547
DOI: 10.1055/a-0774-8272
Review/Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Update zur Versagensanalyse von Implantaten in der Kreuzbandchirurgie: Schicksal oder Fehler?

Article in several languages: English | deutsch
Lukas Münch
Abteilung und Poliklinik für Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München
,
Elmar Herbst
Abteilung und Poliklinik für Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München
,
Felix Dyrna
Abteilung und Poliklinik für Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München
,
Florian B. Imhoff
Abteilung und Poliklinik für Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München
,
Andreas B. Imhoff
Abteilung und Poliklinik für Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München
,
Knut Beitzel
Abteilung und Poliklinik für Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München
› Author Affiliations
Further Information

Publication History

Publication Date:
07 January 2019 (online)

Zusammenfassung

Die Ursachen für das Versagen von Rekonstruktionen des vorderen Kreuzbandes (VKB) sind vielfältig und erfordern einen multifaktoriellen Erklärungsansatz. Neben technischen operativen Fehlern müssen bei der Versagensanalyse auch die vielen für eine erneute VKB-Verletzung prädisponierenden Risikofaktoren berücksichtigt werden. Technische Fehler beinhalten vor allem die nicht anatomische Platzierung der tibialen und femoralen Bohrkanäle. Eine anatomische Position des femoralen Tunnels kann nur durch eine vom tibialen Bohrkanal unabhängige Anlagetechnik erreicht werden. Bei den Risikofaktoren lassen sich nicht modifizierbare und modifizierbare Risikofaktoren unterscheiden, wobei eine Kombination von mehr als einem Risikofaktor das Verletzungsrisiko erheblich steigert. Zu den nicht modifizierbaren Faktoren gehören die genetische Prädisposition, weibliches Geschlecht, junges Alter und eine allgemeine Hyperlaxität. Ein junges Patientenalter bei erstmaliger Verletzung stellt vor allem in Zusammenhang mit Hochrisikosportarten einen wesentlichen Risikofaktor für ein Transplantatversagen dar. Zu den modifizierbaren Faktoren gehören ein hoher Body-Mass-Index, Defizite im Sprunglandungsmechanismus, ein steiler posteriorer tibialer Slope und eine schmale Notchweite. Diese lassen sich durch neuromuskuläres Training oder zusätzliche operative Eingriffe verändern, sodass das Risiko einer weiteren Verletzung reduziert werden kann. Das operative Verfahren der Wahl zur Reduktion des tibialen Slopes ist die hohe tibiale Osteotomie. Hierdurch kann die anteriore Tibiatranslation verringert werden. Bei einem tibialen Slope von über 12° sollte ein derartiges Verfahren in Betracht gezogen werden. Eine zusätzliche laterale extraartikuläre Stabilisierung sollte vor allem bei Revisionsplastiken des VKB mit einer verbliebenen anterolateralen Rotationsstabilität erwogen werden. Auch bei Patienten, die durch Risikosportarten, begleitende Hyperlaxität oder zusätzliche Beteiligung der peripheren Strukturen bei VKB-Insuffizienz zur Hochrisikogruppe gezählt werden, sollte ein derartiger Eingriff diskutiert werden. Zudem kann der Belag des Sportfeldes modifiziert und somit Einfluss auf das Verletzungsrisiko genommen werden. Zusammenfassend kann man sagen, dass nicht nur im Falle einer VKB-Reruptur eine fundierte Versagensanalyse erfolgen muss, sondern die genannten Faktoren schon bei der Risikoabschätzung in der Patientenaufklärung berücksichtigt werden sollten. Nur so kann eine gezielte und individualisierte Therapie durchgeführt werden.

 
  • References/Literatur

  • 1 Chen JL, Allen CR, Stephens TE. et al. Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: a MARS cohort study. Am J Sports Med 2013; 41: 1571-1578
  • 2 Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44: 2827-2832
  • 3 Lind M, Menhert F, Pedersen AB. Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med 2012; 40: 1551-1557
  • 4 Wright RW, Huston LJ, Spindler KP. et al. Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 2010; 38: 1979-1986
  • 5 Gabler CM, Jacobs CA, Howard JS. et al. Comparison of graft failure rate between autografts placed via an anatomic anterior cruciate ligament reconstruction technique: a systematic review, meta-analysis, and meta-regression. Am J Sports Med 2016; 44: 1069-1079
  • 6 Wasserstein D, Sheth U, Cabrera A. et al. A systematic review of failed anterior cruciate ligament reconstruction with autograft compared with allograft in young patients. Sports Health 2015; 7: 207-216
  • 7 Conte EJ, Hyatt AE, Gatt CJ. et al. Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 2014; 30: 882-890
  • 8 Debieux P, Franciozi CE, Lenza M. et al. Bioabsorbable versus metallic interference screws for graft fixation in anterior cruciate ligament reconstruction. Cochrane Database Syst Rev 2016; (07) CD009772
  • 9 Marchant BG, Noyes FR, Barber-Westin SD. et al. Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med 2010; 38: 1987-1996
  • 10 Loh JC, Fukuda Y, Tsuda E. et al. Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 oʼclock and 10 oʼclock femoral tunnel placement. 2002 Richard OʼConnor Award paper. Arthroscopy 2003; 19: 297-304
  • 11 Scopp JM, Jasper LE, Belkoff SM. et al. The effect of oblique femoral tunnel placement on rotational constraint of the knee reconstructed using patellar tendon autografts. Arthroscopy 2004; 20: 294-299
  • 12 Musahl V, Plakseychuk A, VanScyoc A. et al. Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 2005; 33: 712-718
  • 13 Abebe ES, Moorman CT, Dziedzic TS. et al. Femoral tunnel placement during anterior cruciate ligament reconstruction: an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel-independent techniques. Am J Sports Med 2009; 37: 1904-1911
  • 14 Colvin AC, Shen W, Musahl V. et al. Avoiding pitfalls in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2009; 17: 956-963
  • 15 Howell SM, Gittins ME, Gottlieb JE. et al. The relationship between the angle of the tibial tunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction. Am J Sports Med 2001; 29: 567-574
  • 16 Kopf S, Forsythe B, Wong AK. et al. Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Joint Surg Am 2010; 92: 1427-1431
  • 17 Shen W, Forsythe B, Ingham SM. et al. Application of the anatomic double-bundle reconstruction concept to revision and augmentation anterior cruciate ligament surgeries. J Bone Joint Surg Am 2008; 90 (Suppl. 04) S20-S34
  • 18 Uhorchak JM, Scoville CR, Williams GN. et al. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 2003; 31: 831-842
  • 19 Smith HC, Vacek P, Johnson RJ. et al. Risk factors for anterior cruciate ligament injury: a review of the literature – part 1: neuromuscular and anatomic risk. Sports Health 2012; 4: 69-78
  • 20 Smith HC, Vacek P, Johnson RJ. et al. Risk factors for anterior cruciate ligament injury: a review of the literature-part 2: hormonal, genetic, cognitive function, previous injury, and extrinsic risk factors. Sports Health 2012; 4: 155-161
  • 21 Paterno MV. Incidence and predictors of second anterior cruciate ligament injury after primary reconstruction and return to sport. J Athl Train 2015; 50: 1097-1099
  • 22 Dragoo JL, Lee RS, Benhaim P. et al. Relaxin receptors in the human female anterior cruciate ligament. Am J Sports Med 2003; 31: 577-584
  • 23 Dragoo JL, Castillo TN, Braun HJ. et al. Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. Am J Sports Med 2011; 39: 2175-2180
  • 24 Konopka JA, DeBaun MR, Chang W. et al. The intracellular effect of relaxin on female anterior cruciate ligament cells. Am J Sports Med 2016; 44: 2384-2392
  • 25 Fischer F, Fink C, Herbst E. et al. Higher hamstring-to-quadriceps isokinetic strength ratio during the first post-operative months in patients with quadriceps tendon compared to hamstring tendon graft following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2018; 26: 418-425
  • 26 Paterno MV, Rauh MJ, Schmitt LC. et al. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 2012; 22: 116-121
  • 27 Paterno MV, Rauh MJ, Schmitt LC. et al. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med 2014; 42: 1567-1573
  • 28 Schilaty ND, Bates NA, Sanders TL. et al. Incidence of second anterior cruciate ligament tears (1990–2000) and associated factors in a specific geographic locale. Am J Sports Med 2017; 45: 1567-1573
  • 29 van Eck CF, Martins CA, Lorenz SG. et al. Assessment of correlation between knee notch width index and the three-dimensional notch volume. Knee Surg Sports Traumatol Arthrosc 2010; 18: 1239-1244
  • 30 Millett PJ, Wickiewicz TL, Warren RF. Motion loss after ligament injuries to the knee. Part II: prevention and treatment. Am J Sports Med 2001; 29: 822-828
  • 31 Bouras T, Fennema P, Burke S. et al. Stenotic intercondylar notch type is correlated with anterior cruciate ligament injury in female patients using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1252-1257
  • 32 Kopf S, Pombo MW, Szczodry M. et al. Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 2011; 39: 108-113
  • 33 Feucht MJ, Tischer T. [Osteotomies around the knee for ligament insufficiency]. Orthopade 2017; 46: 601-609
  • 34 Feucht MJ, Mauro CS, Brucker PU. et al. The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 2013; 21: 134-145
  • 35 Yamaguchi KT, Cheung EC, Markolf KL. et al. Effects of anterior closing wedge tibial osteotomy on anterior cruciate ligament force and knee kinematics. Am J Sports Med 2018; 46: 370-377
  • 36 Wordeman SC, Quatman CE, Kaeding CC. et al. In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 2012; 40: 1673-1681
  • 37 Giffin JR, Vogrin TM, Zantop T. et al. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 2004; 32: 376-382
  • 38 Agneskirchner JD, Hurschler C, Stukenborg-Colsman C. et al. Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 2004; 124: 575-584
  • 39 Dejour D, Saffarini M, Demey G. et al. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 2015; 23: 2846-2852
  • 40 Sonnery-Cottet B, Mogos S, Thaunat M. et al. Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 2014; 42: 1873-1880
  • 41 Tischer T, Paul J, Pape D. et al. The impact of osseous malalignment and realignment procedures in knee ligament surgery: a systematic review of the clinical evidence. Orthop J Sports Med 2017; 5: 2325967117697287
  • 42 van de Pol GJ, Arnold MP, Verdonschot N. et al. Varus alignment leads to increased forces in the anterior cruciate ligament. Am J Sports Med 2009; 37: 481-487
  • 43 Hinckel BB, Demange MK, Gobbi RG. et al. The effect of mechanical varus on anterior cruciate ligament and lateral collateral ligament stress: finite element analyses. Orthopedics 2016; 39: e729-e736
  • 44 Shelbourne KD, Wilckens JH. Intraarticular anterior cruciate ligament reconstruction in the symptomatic arthritic knee. Am J Sports Med 1993; 21: 685-689
  • 45 Tajima G, Iriuchishima T, Ingham SJ. et al. Anatomic double-bundle anterior cruciate ligament reconstruction restores patellofemoral contact areas and pressures more closely than nonanatomic single-bundle reconstruction. Arthroscopy 2010; 26: 1302-1310
  • 46 Gardinier ES, Manal K, Buchanan TS. et al. Altered loading in the injured knee after ACL rupture. J Orthop Res 2013; 31: 458-464
  • 47 Ahldén M, Sernert N, Karlsson J. et al. A prospective randomized study comparing double- and single-bundle techniques for anterior cruciate ligament reconstruction. Am J Sports Med 2013; 41: 2484-2491
  • 48 Ayeni OR, Chahal M, Tran MN. et al. Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 2012; 20: 767-777
  • 49 Claes S, Vereecke E, Maes M. et al. Anatomy of the anterolateral ligament of the knee. J Anat 2013; 223: 321-328
  • 50 Musahl V, Getgood A, Neyret P. et al. Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL Injury: a roundtable discussion. Knee Surg Sports Traumatol Arthrosc 2017; 25: 997-1008
  • 51 Rasmussen MT, Nitri M, Williams BT. et al. An in vitro robotic assessment of the anterolateral ligament, part 1: secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury. Am J Sports Med 2016; 44: 585-592
  • 52 Nitri M, Rasmussen MT, Williams BT. et al. An in vitro robotic assessment of the anterolateral ligament, part 2: anterolateral ligament reconstruction combined with anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44: 593-601
  • 53 Huser LE, Noyes FR, Jurgensmeier D. et al. Anterolateral ligament and iliotibial band control of rotational stability in the anterior cruciate ligament-intact knee: defined by tibiofemoral compartment translations and rotations. Arthroscopy 2017; 33: 595-604
  • 54 Noyes FR, Huser LE, Jurgensmeier D. et al. Is an anterolateral ligament reconstruction required in ACL-reconstructed knees with associated injury to the anterolateral structures? A robotic analysis of rotational knee stability. Am J Sports Med 2017; 45: 1018-1027
  • 55 Kittl C, El-Daou H, Athwal KK. et al. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med 2016; 44: 345-354
  • 56 Slette EL, Mikula JD, Schon JM. et al. Biomechanical results of lateral extra-articular tenodesis procedures of the knee: a systematic review. Arthroscopy 2016; 32: 2592-2611
  • 57 Williams A, Ball S, Stephen J. et al. The scientific rationale for lateral tenodesis augmentation of intra-articular ACL reconstruction using a modified ‘Lemaire’ procedure. Knee Surg Sports Traumatol Arthrosc 2017; 25: 1339-1344
  • 58 Hewison CE, Tran MN, Kaniki N. et al. Lateral extra-articular tenodesis reduces rotational laxity when combined with anterior cruciate ligament reconstruction: a systematic review of the literature. Arthroscopy 2015; 31: 2022-2034
  • 59 Sonnery-Cottet B, Saithna A, Cavalier M. et al. Anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates at a minimum follow-up of 2 years: a prospective comparative study of 502 patients from the SANTI Study Group. Am J Sports Med 2017; 45: 1547-1557
  • 60 Sonnery-Cottet B, Archbold P, Zayni R. et al. Prevalence of septic arthritis after anterior cruciate ligament reconstruction among professional athletes. Am J Sports Med 2011; 39: 2371-2376
  • 61 Sonnery-Cottet B, Thaunat M, Freychet B. et al. Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med 2015; 43: 1598-1605
  • 62 Inderhaug E, Stephen JM, El-Daou H. et al. The effects of anterolateral tenodesis on tibiofemoral contact pressures and kinematics. Am J Sports Med 2017; 45: 3081-3088
  • 63 Herbst E, Arilla FV, Guenther D. et al. Lateral extra-articular tenodesis has no effect in knees with isolated anterior cruciate ligament injury. Arthroscopy 2018; 34: 251-260
  • 64 Paterno MV, Schmitt LC, Ford KR. et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 2010; 38: 1968-1978
  • 65 Herbst E, Hoser C, Hildebrandt C. et al. Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part II: clinical application of a new test battery. Knee Surg Sports Traumatol Arthrosc 2015; 23: 1283-1291
  • 66 Mandelbaum BR, Silvers HJ, Watanabe DS. et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med 2005; 33: 1003-1010
  • 67 Soligard T, Myklebust G, Steffen K. et al. Comprehensive warm-up programme to prevent injuries in young female footballers: cluster randomised controlled trial. BMJ 2008; 337: a2469