neuroreha 2018; 10(04): 178-183
DOI: 10.1055/a-0754-3281
Schwerpunkt
© Georg Thieme Verlag KG Stuttgart · New York

Periphere Stimulation

Hubert R. Dinse
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
07. Dezember 2018 (online)

Zusammenfassung

Neben direkter zentralnervöser Stimulation wie TMS oder tDCS und roboter- und gerätegestützter Rehabilitation wurden Therapieansätze basierend auf peripherer Stimulation entwickelt. Die bisher an Gesunden erhobenen Befunde deuten darauf hin, dass die repetitive sensorische Stimulation zu einer weitreichenden Reorganisation in den sensomotorischen Netzwerken führt. Die bisher publizierten Metastudien verweisen darauf, dass die alleinige oder in Kombination mit anderen Therapiemaßnahmen erfolgende Anwendung der peripheren Stimulation zu einem verbesserten Rehabilitationserfolg führt. Die Möglichkeit, die Stimulation zu Hause über lange Zeit anzuwenden zu können, dürfte gerade für die Langzeitbehandlung chronischer Patienten eine wichtige Rolle spielen.

 
  • Literatur

  • 1 Bliss TV, Collingridge GL. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993; 361: 31-39
  • 2 Brickwedde M, Krüger MC, Dionse HR. Somatosensory alpha oscillations gateperceptual learning efficiency [in press].
  • 3 Celnik P, Hummel F, Harris-Love M. et al. Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil 2007; 88: 1369-1376
  • 4 Clapp WC, Hamm JP, Kirk IJ. et al. Translating long-term potentiation from animals to humans: A novel method for noninvasive assessment of cortical plasticity. Biol Psychiatry 2012; 71: 496-502
  • 5 Conforto AB, Kaelin-Lang A, Cohen LG. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol 2002; 51: 122-125
  • 6 Conforto AB, Dos Anjos SM, Bernardo WM. et al. Repetitive peripheral sensorystimulation and upper limb performance in stroke: A systematic review and meta-analysis. Neurorehabil Neural Repair. 2018 doi:10.1177/1545968318798943
  • 7 Dinse HR, Ragert P, Pleger B. et al. Pharmacological modulation of perceptuallearning and associated cortical reorganization. Science 2003; a 301: 91-94
  • 8 Dinse HR, Ragert P, Pleger B. et al. GABAergic mechanisms gate tactilediscrimination learning. Neuroreport 2003; b 14: 1747-1751
  • 9 Dinse HR, Kalisch T, Ragert P. et al. Improving human haptic performance in normal and impaired human populations through unattended activation-based learning. Trans Appl Percep 2005; 2: 71-88
  • 10 Dinse HR, Tegenthoff M. Repetitive sensory stimulation: A canonical approach tocontrol the induction of human learning at a behavioural and neural level. In: Manahan-Vaughan D. ed. Handbook of in Vivo Neural Plasticity Techniques. Vol 28: ASystems Neuroscience Approach to the Neural Basis of Memory and Cognition. 2019: 1-540
  • 11 Freyer F, Becker R, Dinse HR. et al. State-dependent perceptual learning. J Neurosci 2013; 33: 2900-2907
  • 12 Heba S, Puts NAJ, Kalisch T. et al. Local GABA-concentration predicts perceptual improvements after repetitive sensory stimulation in humans. Cerebral Cortex 2016; 26: 1295-1301
  • 13 Heba S, Lenz M, Kalisch T. et al. Regionally specific regulation of sensorimotor network connectivity following tactile improvement. Neural Plasticity Article. 2017 ID 5270532
  • 14 Hoeffken O, Veit M, Knossalla F. et al. Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. J Physiol 2007; 584: 463-471
  • 15 Kattenstroth JC, Kalisch T, Tegenthoff M. et al. Long-term sensory stimulation therapy improves hand function and restores cortical responsiveness in patients with chronic cerebral lesions: Three single case studies. Front Hum Neurosci 2012; 6: 244 doi:10.3389/fnhum.2012.00244
  • 16 Kattenstroth JC, Kalisch T, Sczesny-Kaiser M. et al. Daily repetitive sensory stimulation of the paretic hand for the treatment of sensorimotor deficits in patients with subacute stroke: RESET, a randomized, sham-controlled trial. BMC Neurol 2018; 18: 2
  • 17 Kwakkel G, van Peppen R, Wagenaar RC. et al. Effects of augmented exercise therapy time after stroke: A meta-analysis. Stroke 2004; 35: 2529-2539
  • 18 McDonnell MN, Hillier SL, Miles TS. et al. Influence of combined afferent stimulation and task-specific training following stroke: A pilot randomized controlled trial. Neurorehabil Neural Repair 2007; 21: 435-443
  • 19 Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 1995; 377: 115-118
  • 20 Pleger B, Foerster AF, Ragert P. et al. Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron 2003; 40: 643-653
  • 21 Plow EB, Sankarasubramanian V, Cunningham DA. et al. Models to tailor brains timulation therapies in stroke. Neural Plast 2016; 4071620
  • 22 Pollock A, Farmer SE, Brady MC. et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev 2014; 11: CD010820
  • 23 Ragert P, Kalisch T, Bliem B. et al. Differential effects in human tactile discrimination behavior evoked by tactile high- and low-frequency stimulation. BMC Neurosci 2008; 9: 9
  • 24 Sawaki L, Wu CW, Kaelin-Lang A. et al. Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke. Stroke 2006; 37: 246-247
  • 25 Schmidt-Wilcke T, Wulms N, Heba S. et al. Structural changes in brain morphology induced by brief periods of repetitive sensory stimulation. NeuroImage 2017; 165: 148-157
  • 26 Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nature Rev Neurosci 2002; 3: 228-236
  • 27 Wu CW, Seo HJ, Cohen LG. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch Phys Med Rehabil 2006; 87: 351-357