Z Orthop Unfall 2019; 157(04): 367-377
DOI: 10.1055/a-0732-5986
Review/Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Intraoperative Imaging in Pelvic Surgery

Artikel in mehreren Sprachen: English | deutsch
Holger Keil
Klinik für Unfall- und orthopädische Chirurgie, BG Unfallklinik Ludwigshafen
,
Sara Aytac
Klinik für Unfall- und orthopädische Chirurgie, BG Unfallklinik Ludwigshafen
,
Paul Alfred Grützner
Klinik für Unfall- und orthopädische Chirurgie, BG Unfallklinik Ludwigshafen
,
Jochen Franke
Klinik für Unfall- und orthopädische Chirurgie, BG Unfallklinik Ludwigshafen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. November 2018 (online)

Abstract

Pelvic fractures may range from highly severe, life-threatening injuries to less acute clinical entities. There are several sub-entities that are summed up as pelvic injuries. Anatomically, there are fractures of the anterior or posterior pelvic ring. Apart from these, there are fractures of the acetabulum that make up about one fifth of all pelvic injuries. The indication for surgical treatment of pelvic ring injuries depends on the type of injury, involvement of anterior and/or posterior elements of the pelvic ring, demands and the general condition of the patient. In acetabular fractures, indications depend on the dislocation of the fracture and of course also the needs of the patient and his general condition. An intraarticular step-off of more than 2 mm is usually considered as an indication for open reduction and osteosynthesis. Usually in all these injuries, a preoperative CT scan is mandatory to allow precise planning of the operative approach and technique. Intraoperatively, the surgeon should be familiar with the acquisition of the 2D standard views, including 2D imaging of the pelvic ring and the acetabulum. These consist of the anteroposterior view for both pelvic ring and acetabular osteosyntheses. For further assessment of pelvic ring treatments, inlet and outlet views are achievable by angulating the C-arm cranially and caudally. To assess aspects of the anterior and posterior column of the acetabulum, iliac oblique views are used. Here, the C-arm is rotated laterally. As evaluation of 2D views can be limited due to anatomy and superposing structures, intraoperative 3D imaging has become common in the last decade. Special C-arms allow the automatic acquisition of large numbers of projections and create CT-like views of the central volume. Although this method has significantly widened the possibilities of intraoperative imaging, some issues remain. Depending on the amount of implants placed in the imaging field, assessment can be seriously impaired due to artefacts caused by the implants. Intraoperative CT imaging promises enhanced image quality for artefacts and allows a considerably larger field of view. The use of radiation-free navigation facilitates implant placement in minimally invasive procedures like screw placement in the sacroiliacal joint or the acetabulum by visualisation of instruments and implants in a pre- or intraoperative 3D data set.

 
  • References/Literatur

  • 1 Tscherne H, Pohlemann T. Inzidenz Beckenverletzungen. In: Unfallchirurgie: Becken und Acetabulum. Heidelberg: Springer; 1997: 89-115
  • 2 Schweigkofler U, Wohlrath B, Trentsch H. et al. Diagnostics and early treatment in prehospital and emergency-room phase in suspicious pelvic ring fractures. Eur J Trauma Emerg Surg 2017; DOI: 10.1007/s00068-017-0860-0.
  • 3 Manson T, OʼToole RV, Whitney A. et al. Young-Burgess classification of pelvic ring fractures: does it predict mortality, transfusion requirements, and non-orthopaedic injuries?. J Orthop Trauma 2010; 24: 603-609
  • 4 Rommens PM, Wagner D, Hofmann A. Fragility fractures of the pelvis. JBJS Rev 2017; DOI: 10.2106/JBJS.RVW.16.00057.
  • 5 Judet R, Judet J, Letournel E. Fractures of the acetabulum: classification and surgical approaches for open reduction. Preliminary report. J Bone Joint Surg Am 1964; 46: 1615-1646
  • 6 Visutipol B, Chobtangsin P, Ketmalasiri B. et al. Evaluation of Letournel and Judet classification of acetabular fracture with plain radiographs and three-dimensional computerized tomographic scan. J Orthop Surg (Hong Kong) 2000; 8: 33-37
  • 7 Matta JM, Anderson LM, Epstein HC. et al. Fractures of the acetabulum. A retrospective analysis. Clin Orthop Relat Res 1986; (205) 230-240
  • 8 Van Tiggelen R. Since 1895, orthopaedic surgery relies on x-ray imaging: a historical overview from discovery to computed tomography. Acta Orthop Belg 2001; 67: 317-329
  • 9 Eagleton MJ. Intraprocedural imaging: Flat panel detectors, rotational angiography, FluoroCT, IVUS, or still the portable C-arm?. J Vasc Surg 2010; 52 (4 Suppl.): 50S-59S
  • 10 Moon SW, Kim JW. Usefulness of intraoperative three-dimensional imaging in fracture surgery: a prospective study. J Orthop Sci 2014; 19: 125-131
  • 11 Carelsen B, Haverlag R, Ubbink DT. et al. Does intraoperative fluoroscopic 3D imaging provide extra information for fracture surgery?. Arch Orthop Trauma Surg 2008; 128: 1419-1424
  • 12 Atesok K, Finkelstein J, Khoury A. et al. The use of intraoperative three-dimensional imaging (ISO-C-3D) in fixation of intraarticular fractures. Injury 2007; 38: 1163-1169
  • 13 Rock C, Kotsianos D, Linsenmaier U. et al. [Studies on image quality, high contrast resolution and dose for the axial skeleton and limbs with a new, dedicated CT system (ISO-C-3 D)]. Rofo 2002; 174: 170-176
  • 14 Sebaaly A, Riouallon G, Zaraa M. et al. The added value of intraoperative CT scanner and screw navigation in displaced posterior wall acetabular fracture with articular impaction. Orthop Traumatol Surg Res 2016; 102: 947-950
  • 15 Eckardt H, Lind D, Toendevold E. Open reduction and internal fixation aided by intraoperative 3-dimensional imaging improved the articular reduction in 72 displaced acetabular fractures. Acta Orthop 2015; 86: 684-689
  • 16 von Recum J, Wendl K, Vock B. et al. Die intraoperative 3D-C-Bogen-Anwendung. Unfallchirurg 2012; 115: 196-201
  • 17 Keil H, Beisemann N, Schnetzke M. et al. Intraoperative assessment of reduction and implant placement in acetabular fractures-limitations of 3D-imaging compared to computed tomography. J Orthop Surg Res 2018; 13: 78
  • 18 Hecht N, Kamphuis M, Czabanka M. et al. Accuracy and workflow of navigated spinal instrumentation with the mobile AIRO® CT scanner. Eur Spine J 2016; 25: 716-723
  • 19 Hecht N, Yassin H, Czabanka M. et al. Intraoperative computed tomography versus 3D C-arm imaging for navigated spinal instrumentation. Spine (Phila Pa 1976) 2018; 43: 370-377 doi:10.1097/BRS.0000000000002173
  • 20 Grossterlinden L, Nuechtern J, Begemann PGC. et al. Computer-assisted surgery and intraoperative three-dimensional imaging for screw placement in different pelvic regions. J Trauma 2011; 71: 926-932
  • 21 Matityahu A, Kahler D, Krettek C. et al. Three-dimensional navigation is more accurate than two-dimensional navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum. J Orthop Trauma 2014; 28: 707-710
  • 22 Thakkar SC, Thakkar RS, Sirisreetreerux N. et al. 2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology. Int J Comput Assist Radiol Surg 2017; 12: 69-76