Aktuelle Ernährungsmedizin 2018; 43(05): 341-408
DOI: 10.1055/a-0713-8179
Leitlinie
© Georg Thieme Verlag KG Stuttgart · New York

DGEM-Leitlinie: „Klinische Ernährung in der Intensivmedizin“

S2k-Leitlinie (AWMF-Registernummer 073-004) der Deutschen Gesellschaft für Ernährungsmedizin (DGEM[a]) in Zusammenarbeit mit der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI[b]) sowie den Fachgesellschaften Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI[c]), Deutsche Gesellschaft für Chirurgie (DGCH[d]), Deutsche Gesellschaft für Internistische Intensivmedizin und Notfallmedizin (DGIIN[e]), Deutsche Gesellschaft für Kardiologie (DGK[f]), Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG[g]) und Deutsche Sepsis-Gesellschaft (DSG[h])DGEM Guideline “Clinical Nutrition in Critical Care Medicine”S2k-Guideline (AWMF Registry Number 073-004) of the German Society for Nutritional Medicine (DGEMa) in Cooperation with the German Interdisciplinary Association of Intensive and Emergency Medicine (DIVIb) and the Medical Societies German Society of Anaesthesiology and Intensive Care Medicine (DGAIc), German Society of Surgery (DGCHd), German Society of Medical Intensive Care and Emergency Medicine (DGIINe), German Cardiac Society (DGKf), German Society for Thoracic and Cardiovascular Surgery (DGTHGg) and German Sepsis Society (DSGh)
Gunnar Elke
 1   Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel
,
Wolfgang H. Hartl
 2   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Ludwig-Maximilians-Universität München – Klinikum der Universität, Campus Großhadern, München
,
K. Georg Kreymann
 3   Flemingstraße 2, 22299 Hamburg
,
Michael Adolph
 4   Universitätsklinik für Anästhesiologie und Intensivmedizin und Stabsstelle Ernährungsmanagement, Universitätsklinikum Tübingen, Tübingen
,
Thomas W. Felbinger
 5   Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Kliniken Harlaching, Neuperlach und Schwabing, Städtisches Klinikum München GmbH, München
,
Tobias Graf
 6   Universitäres Herzzentrum Lübeck – Medizinische Klinik II/Kardiologie, Angiologie, Intensivmedizin, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck
,
Geraldine de Heer
 7   Zentrum für Anästhesiologie und Intensivmedizin, Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
,
Axel R. Heller
 8   Klinik für Anästhesiologie und Operative Intensivmedizin, Universität Augsburg, Augsburg
,
Ulrich Kampa
 9   Klinik für Anästhesiologie und Intensivmedizin, Ev. Krankenhaus Hattingen, Hattingen
,
Konstantin Mayer
10   Zentrum für Innere Medizin, Medizinische Klinik II, Universtitätsklinikum Gießen und Marburg, University of Giessen Lung Center, Standort Gießen, Gießen
,
Elke Muhl
11   Eichhörnchenweg 7, 23627 Gross Grönau
,
Bernd Niemann
12   Klinik für Herz-, Kinderherz- und Gefäßchirurgie, Universitätsklinikum Gießen und Marburg, Standort Gießen, Gießen
,
Andreas Rümelin
13   Klinik für Anästhesie und operative Intensivmedizin, HELIOS St. Elisabeth-Krankenhaus Bad Kissingen, Bad Kissingen
,
Stephan Steiner
14   Abteilung für Kardiologie, Pneumologie und Internistische Intensivmedizin, St. Vincenz-Krankenhaus, Limburg
,
Christian Stoppe
15   Klinik für Operative Intensivmedizin und Intermediate Care, Uniklinik RWTH Aachen, Aachen
,
Arved Weimann
16   Klinik für Allgemein-, Viszeral- und Onkologische Chirurgie , Klinikum St. Georg gGmbH, Leipzig
,
Stephan C. Bischoff
17   Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart
› Author Affiliations
Further Information

Publication History

Publication Date:
17 October 2018 (online)

Zusammenfassung

Fragestellung Die enterale und parenterale Ernährungstherapie kritisch kranker Patienten kann u. a. durch den Zeitpunkt des Beginns, die Wahl des Applikationswegs, die Menge und Zusammensetzung der Makro- und Mikronährstoffzufuhr sowie der Wahl spezieller, immunmodulierender Nährsubstrate variieren. Die Durchführung der Ernährungstherapie nimmt Einfluss auf den klinischen Ausgang dieser Patienten. Ziel der vorliegenden Leitlinie ist es, aktualisierte konsensbasierte Empfehlungen zur klinischen Ernährung kritisch kranker, erwachsener Patienten, die an mindestens einer akuten, medikamentös und/oder mechanisch unterstützungspflichtigen Organdysfunktion leiden, zu geben.

Methodik Die früheren Leitlinien der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) wurden in Einklang mit den aktuellen Richtlinien der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF) als S2k-Leitlinie aktualisiert. Entsprechend der S2k-Klassifikation dieser Leitlinie enthalten die dargestellten Empfehlungen keine Angabe von Evidenz- und Empfehlungsgraden, da keine systematische Aufbereitung der Evidenz zugrunde gelegt wurde. Als Grundlage für die Empfehlungen wurden insbesondere die seit Erscheinen der letzten DGEM-Leitlinien Intensivmedizin publizierten randomisiert-kontrollierten Studien und Metaanalysen, Beobachtungsstudien mit angemessener Fallzahl und hoher methodologischer Qualität (bis Mai 2018) sowie aktuell gültige Leitlinien anderer Fachgesellschaften herangezogen und kommentiert. Die Empfehlungsstärke ist rein sprachlich beschrieben. Jede Empfehlung wurde mittels Delphi-Verfahren abschließend bewertet und konsentiert.

Ergebnisse Die Leitlinie beschreibt einführend die pathophysiologischen Konsequenzen einer kritischen Erkrankung, welche den Metabolismus und die Ernährbarkeit der Patienten beeinflussen können, ferner die Definitionen unterschiedlicher Erkrankungsphasen im Krankheitsverlauf und sie diskutiert methodologische Aspekte zu ernährungsmedizinischen Studien. In der Folge werden 69 konsentierte Empfehlungen zu wesentlichen, praxisrelevanten Elementen der klinischen Ernährung kritisch kranker Patienten gegeben, darunter die Beurteilung des Ernährungszustands, die Indikation für die klinische Ernährungstherapie, der Beginn und Applikationsweg der Nahrungszufuhr, die Menge und Art der zugeführten Substrate (Makro- und Mikronährstoffe) sowie ernährungstherapeutische Besonderheiten bei adipösen kritisch kranken Patienten und Patienten mit mechanischen Unterstützungssystemen.

Schlussfolgerung Mit der Leitlinie werden aktuelle Handlungsempfehlungen zur enteralen und parenteralen Ernährung erwachsener Patienten geben, die an mindestens einer akuten, medikamentös und/oder mechanisch unterstützungspflichtigen Organdysfunktion leiden. Die Gültigkeit der Leitlinie beträgt voraussichtlich 5 Jahre (2018 – 2023).

Abstract

Purpose Enteral and parenteral nutrition of adult critically ill patients varies in terms of the route of delivery, the amount and composition of macro- and micronutrients, and the choice of special, immune-modulating substrates. Variations of clinical nutrition affect outcome. The present guideline provides updated consensus-based recommendations for clinical nutrition in adult critically ill patients who suffer from at least one acute organ dysfunction requiring specific drug therapy and/or a mechanical support device to maintain organ function.

Methods The recent guidelines of the German Society for Nutritional Medicine (DGEM) were updated according to the current instructions of the Association of the Scientific Medical Societies in Germany (AWMF) valid for a S2k-guideline. According to the S2k-guideline classification no systematic review of the available evidence was required to make recommendations, which therefore, do not state evidence- or recommendation grades. Nevertheless, we considered and commented the evidence from randomized-controlled trials, meta-analyses and observational studies with adequate sample size and high methodological quality (until May 2018) as well as from currently valid guidelines of other societies. The grading of each recommendation is solely described linguistically. Each recommendation was finally validated and consented through a Delphi process.

Results In the introduction the guideline describes a) the pathophysiological consequences of critical illness possibly affecting metabolism and nutrition of critically ill patients, b) potential definitions for different disease stages during the course of illness, and c) methodological shortcomings of clinical trials on nutrition. Then, we make 69 consented recommendations for essential, practice-relevant elements of clinical nutrition in critically ill patients. Among others, recommendations include the assessment of nutritional status, the indication for clinical nutrition therapy, the timing and route of nutrition, and the amount and composition of substrates (macro- and micronutrients) as well as distinctive aspects of nutrition therapy in obese critically ill patients and those with mechanical support devices.

Conclusion The current guideline provides up-to-date recommendations for enteral and parenteral nutrition of adult critically ill patients who suffer from at least one acute organ dysfunction requiring specific drug therapy and/or a mechanical support device to maintain organ function. The period of validity of the guideline is approximately fixed at five years (2018 – 2023).

a DGEM e. V. Geschäftsstelle, Claire-Waldoff-Straße 3, 10117 Berlin, E-Mail: infostelle@dgem.de


b DIVI Geschäftsstelle, Luisenstraße 45, 10117 Berlin, E-Mail: info@divi.de


c DGAI Geschäftstelle, Roritzerstraße 27, 90419 Nürnberg, E-Mail: dgai@dgai-ev.de


d DGCH, Luisenstraße 58/59, 10117 Berlin, E-Mail: info@dgch.de


e DGIIN Geschäftsstelle, Seumestraße 8, 10245 Berlin, E-Mail: gs@dgiin.de


f DGK, Grafenberger Allee 100, 40237 Düsseldorf, E-Mail: info@dgk.org


g DGTHG, Geschäftsstelle Langenbeck-Virchow-Haus, Luisenstraße 58/59, 10117 Berlin, E-Mail: sekretariat@dgthg.de


h DSG Geschäftsstelle, Universitätsklinikum Jena, Erlanger Allee 101, 07747 Jena, E-Mail: sepsis@med.uni-jena.de


 
  • Literatur

  • 1 Jochum F, Krohn K, Kohl M. et al. Parenterale Ernährung in der Kinder- und Jugendmedizin. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der Gesellschaft für klinische Ernährung der Schweiz (GESKES), der Österreichischen Arbeitsgemeinschaft für klinische Ernährung (AKE), die Deutsche Gesellschaft für Kinder- und Jugendmedizin (DGKJ) und die Gesellschaft für Neonatologie und pädiatrische Intensivmedizin (GNPI). Aktuel Ernahrungsmed 2014; 39: e99-e147
  • 2 McClave SA, Taylor BE, Martindale RG. et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40: 159-211
  • 3 Reintam Blaser A, Starkopf J, Alhazzani W. et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med 2017; 43: 380-398
  • 4 Rhodes A, Evans LE, Alhazzani W. et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med 2017; 45: 486-552
  • 5 Singer P, Berger MM, Van den Berghe G. et al. ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr 2009; 28: 387-400
  • 6 Zeevi D, Korem T, Zmora N. et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015; 163: 1079-1094
  • 7 Bellomo R, Warrillow SJ, Reade MC. Why we should be wary of single-center trials. Crit Care Med 2009; 37: 3114-3119
  • 8 Nüesch E, Trelle S, Reichenbach S. et al. Small study effects in meta-analyses of osteoarthritis trials: meta-epidemiological study. BMJ 2010; 341: c3515
  • 9 Savović J, Jones H, Altman D. et al. Influence of reported study design characteristics on intervention effect estimates from randomised controlled trials: combined analysis of meta-epidemiological studies. Health Technol Assess 2012; 16: 1-82
  • 10 Zhang Z, Xu X, Ni H. Small studies may overestimate the effect sizes in critical care meta-analyses: a meta-epidemiological study. Crit Care 2013; 17: R2
  • 11 Beyersmann J, Wolkewitz M, Schumacher M. The impact of time-dependent bias in proportional hazards modelling. Stat Med 2008; 27: 6439-6454
  • 12 Sylvestre MP, Abrahamowicz M. Flexible modeling of the cumulative effects of time-dependent exposures on the hazard. Stat Med 2009; 28: 3437-3453
  • 13 Ressing M, Blettner M, Klug SJ. Data analysis of epidemiological studies: part 11 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2010; 107: 187-192
  • 14 Kreymann G, Adolph M, Druml W. et al. Intensive medicine – Guidelines on Parenteral Nutrition, Chapter 14. Ger Med Sci 2009; 7: Doc14
  • 15 Kreymann G, Ebener C, Hartl W. et al. DGEM-Leitlinie Enterale Ernährung: Intensivmedizin. Aktuel Ernahrungsmed 2003; 28 (Suppl. 01) S42-S50
  • 16 Hartl WH. Ernährung des kritisch Kranken auf der Intensivstation. In: Biesalski HK, Pirlich M, Bischoff SC, Weimann A. eds. Ernährungsmedizin. Stuttgart, New York: Georg Thieme Verlag; 2018: 805-817
  • 17 Gentile LF, Cuenca AG, Efron PA. et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 2012; 72: 1491-1501
  • 18 Rosenthal MD, Moore FA. Persistent Inflammation, Immunosuppression, and Catabolism: Evolution of Multiple Organ Dysfunction. Surg Infect (Larchmt) 2016; 17: 167-172
  • 19 Barr J, Hecht M, Flavin KE. et al. Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest 2004; 125: 1446-1457
  • 20 Clifford ME, Banks MD, Ross LJ. et al. A detailed feeding algorithm improves delivery of nutrition support in an intensive care unit. Crit Care Resusc 2010; 12: 149-155
  • 21 Heyland DK, Dhaliwal R, Day A. et al. Validation of the Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients: results of a prospective observational study. Crit Care Med 2004; 32: 2260-2266
  • 22 Martin CM, Doig GS, Heyland DK. et al. Multicentre, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT). CMAJ 2004; 170: 197-204
  • 23 McClave SA, Saad MA, Esterle M. et al. Volume-Based Feeding in the Critically Ill Patient. JPEN J Parenter Enteral Nutr 2015; 39: 707-712
  • 24 Peev MP, Yeh DD, Quraishi SA. et al. Causes and consequences of interrupted enteral nutrition: a prospective observational study in critically ill surgical patients. JPEN J Parenter Enteral Nutr 2015; 39: 21-27
  • 25 Doig GS, Simpson F, Finfer S. et al. Effect of evidence-based feeding guidelines on mortality of critically ill adults: a cluster randomized controlled trial. JAMA 2008; 300: 2731-2741
  • 26 Heyland DK, Murch L, Cahill N. et al. Enhanced protein-energy provision via the enteral route feeding protocol in critically ill patients: results of a cluster randomized trial. Crit Care Med 2013; 41: 2743-2753
  • 27 Heyland DK, Cahill NE, Dhaliwal R. et al. Enhanced protein-energy provision via the enteral route in critically ill patients: a single center feasibility trial of the PEP uP protocol. Crit Care 2010; 14: R78
  • 28 Jensen GL, Mirtallo J, Compher C. et al. Adult starvation and disease-related malnutrition: a proposal for etiology-based diagnosis in the clinical practice setting from the International Consensus Guideline Committee. JPEN J Parenter Enteral Nutr 2010; 34: 156-159
  • 29 White JV, Guenter P, Jensen G. et al. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr 2012; 36: 275-283
  • 30 Mogensen KM, Robinson MK, Casey JD. et al. Nutritional Status and Mortality in the Critically Ill. Crit Care Med 2015; 43: 2605-2615
  • 31 Moisey LL, Mourtzakis M, Cotton BA. et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care 2013; 17: R206
  • 32 Weijs PJ, Looijaard WG, Dekker IM. et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care 2014; 18: R12
  • 33 Cederholm T, Bosaeus I, Barazzoni R. et al. Diagnostic criteria for malnutrition – An ESPEN Consensus Statement. Clin Nutr 2015; 34: 335-340
  • 34 Wischmeyer PE, Hasselmann M, Kummerlen C. et al. A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill patients: the TOP-UP pilot trial. Crit Care 2017; 21: 142
  • 35 Heyland DK, Dhaliwal R, Jiang X. et al. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care 2011; 15: R268
  • 36 Compher C, Chittams J, Sammarco T. et al. Greater Protein and Energy Intake May Be Associated With Improved Mortality in Higher Risk Critically Ill Patients: A Multicenter, Multinational Observational Study. Crit Care Med 2017; 45: 156-163
  • 37 Nicolo M, Heyland DK, Chittams J. et al. Clinical Outcomes Related to Protein Delivery in a Critically Ill Population: A Multicenter, Multinational Observation Study. JPEN J Parenter Enteral Nutr 2016; 40: 45-51
  • 38 Rahman A, Hasan RM, Agarwala R. et al. Identifying critically-ill patients who will benefit most from nutritional therapy: Further validation of the „modified NUTRIC“ nutritional risk assessment tool. Clin Nutr 2016; 35: 158-162
  • 39 Arabi YM, Aldawood AS, Al-Dorzi HM. et al. Permissive Underfeeding or Standard Enteral Feeding in High and Low Nutritional Risk Critically Ill Adults: Post-hoc Analysis of the PermiT trial. Am J Respir Crit Care Med 2017; 195: 652-662
  • 40 Valentini LV, Volkert D, Schütz T. et al. Guideline of the German Society for Nutritional Medicine (DGEM) DGEM Terminology for Clinical Nutrition. Aktuel Ernahrungsmed 2013; 38: 97-111
  • 41 Detsky AS, McLaughlin JR, Baker JP. et al. What is subjective global assessment of nutritional status. JPEN J Parenter Enteral Nutr 1987; 11: 8-13
  • 42 Kondrup J, Allison SP, Elia M. et al. ESPEN guidelines for nutrition screening 2002. Clin Nutr 2003; 22: 415-421
  • 43 Hauptmann S, Klosterhalfen B, Weis J. et al. Skeletal muscle oedema and muscle fibre necrosis during septic shock. Observations with a porcine septic shock model. Virchows Arch 1994; 424: 653-659
  • 44 Kuchnia A, Earthman C, Teigen L. et al. Evaluation of Bioelectrical Impedance Analysis in Critically Ill Patients: Results of a Multicenter Prospective Study. JPEN J Parenter Enteral Nutr 2017; 41: 1131-1138
  • 45 Looijaard WG, Dekker IM, Stapel SN. et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients. Crit Care 2016; 20: 386
  • 46 Paris M, Mourtzakis M. Assessment of skeletal muscle mass in critically ill patients: considerations for the utility of computed tomography imaging and ultrasonography. Curr Opin Clin Nutr Metab Care 2016; 19: 125-130
  • 47 Paris MT, Mourtzakis M, Day A. et al. Validation of Bedside Ultrasound of Muscle Layer Thickness of the Quadriceps in the Critically Ill Patient (VALIDUM Study). JPEN J Parenter Enteral Nutr 2017; 41: 171-180
  • 48 Gruther W, Benesch T, Zorn C. et al. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med 2008; 40: 185-189
  • 49 Puthucheary ZA, Rawal J, McPhail M. et al. Acute skeletal muscle wasting in critical illness. JAMA 2013; 310: 1591-1600
  • 50 Puthucheary ZA, Phadke R, Rawal J. et al. Qualitative Ultrasound in Acute Critical Illness Muscle Wasting. Crit Care Med 2015; 43: 1603-1611
  • 51 Puthucheary ZA, McNelly AS, Rawal J. et al. Rectus Femoris Cross-Sectional Area and Muscle Layer Thickness: Comparative Markers of Muscle Wasting and Weakness. Am J Respir Crit Care Med 2017; 195: 136-138
  • 52 Reignier J, Darmon M, Sonneville R. et al. Impact of early nutrition and feeding route on outcomes of mechanically ventilated patients with shock: a post hoc marginal structural model study. Intensive Care Med 2015; 41: 875-886
  • 53 Khalid I, Doshi P, DiGiovine B. Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care 2010; 19: 261-268
  • 54 Koretz RL, Lipman TO. The presence and effect of bias in trials of early enteral nutrition in critical care. Clin Nutr 2014; 33: 240-245
  • 55 Tian F, Heighes PT, Allingstrup MJ. et al. Early Enteral Nutrition Provided Within 24 Hours of ICU Admission: A Meta-Analysis of Randomized Controlled Trials. Crit Care Med 2018; 46: 1049-1056
  • 56 Choi EY, Park DA, Park J. Calorie intake of enteral nutrition and clinical outcomes in acutely critically ill patients: a meta-analysis of randomized controlled trials. JPEN J Parenter Enteral Nutr 2015; 39: 291-300
  • 57 Stuani Franzosi O, Delfino von Frankenberg A, Loss SH. et al. Underfeeding versus full enteral feeding in critically ill patients with acute respiratory failure: a systematic review with meta-analysis of randomized controlled trials. Nutr Hosp 2017; 34: 19-29
  • 58 Tian F, Wang X, Gao X. et al. Effect of initial calorie intake via enteral nutrition in critical illness: a meta- analysis of randomised controlled trials. Crit Care 2015; 19: 180
  • 59 Cuthbertson DP, Angeles Valero Zanuy MA, León Sanz ML. Post-shock metabolic response. 1942. Nutr Hosp 2001; 16: 176-182; discussion 175
  • 60 Kreymann G, Grosser S, Buggisch P. et al. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med 1993; 21: 1012-1019
  • 61 Haugen HA, Chan LN, Li F. Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract 2007; 22: 377-388
  • 62 Singer P, Singer J. Clinical Guide for the Use of Metabolic Carts: Indirect Calorimetry-No Longer the Orphan of Energy Estimation. Nutr Clin Pract 2016; 31: 30-38
  • 63 Allingstrup MJ, Kondrup J, Perner A. et al. Indirect Calorimetry in Mechanically Ventilated Patients: A Prospective, Randomized, Clinical Validation of 2 Devices Against a Gold Standard. JPEN J Parenter Enteral Nutr 2017; 41: 1272-1277
  • 64 Graf S, Karsegard VL, Viatte V. et al. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II(®)? A prospective observational study. Clin Nutr 2015; 34: 60-65
  • 65 Sundström M, Tjäder I, Rooyackers O. et al. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments. Clin Nutr 2013; 32: 118-121
  • 66 Oshima T, Berger MM, De Waele E. et al. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin Nutr 2017; 36: 651-662
  • 67 Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of Underprescription or Overprescription of Energy Needs in Critically Ill Mechanically Ventilated Adults as Determined by Indirect Calorimetry: A Systematic Literature Review. JPEN J Parenter Enteral Nutr 2016; 40: 212-225
  • 68 Singer P, Anbar R, Cohen J. et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med 2011; 37: 601-609
  • 69 Allingstrup MJ, Kondrup J, Wiis J. et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med 2017; 43: 1637-1647
  • 70 Müller MJ, Bosy-Westphal A, Klaus S. et al. World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. Am J Clin Nutr 2004; 80: 1379-1390
  • 71 Weijs PJ, Stapel SN, de Groot SD. et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr 2012; 36: 60-68
  • 72 Weijs PJ, Looijaard WG, Beishuizen A. et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care 2014; 18: 701
  • 73 Zusman O, Theilla M, Cohen J. et al. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care 2016; 20: 367
  • 74 Zusman O, Singer P. Resting energy expenditure and optimal nutrition in critical care: how to guide our calorie prescriptions. Crit Care 2017; 21: 128
  • 75 Kristensen J. Energy expenditure and changes in body composition during exercise-based rehabilitation. J R Army Med Corps 2013; 159: 30-34
  • 76 Mehta NM, Smallwood CD, Joosten KF. et al. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement – a two-center study. Clin Nutr 2015; 34: 151-155
  • 77 Pielmeier U, Andreassen S. VCO2 calorimetry is a convenient method for improved assessment of energy expenditure in the intensive care unit. Crit Care 2016; 20: 224
  • 78 Rousing ML, Hahn-Pedersen MH, Andreassen S. et al. Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann Intensive Care 2016; 6: 16
  • 79 Stapel SN, de Grooth HJ, Alimohamad H. et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care 2015; 19: 370
  • 80 De Waele E, Honoré PM, Spapen HD. VCO2 calorimetry: stop tossing stones, it’s time for building. Crit Care 2016; 20: 399
  • 81 Oshima T, Graf S, Heidegger CP. et al. Can calculation of energy expenditure based on CO2 measurements replace indirect calorimetry?. Crit Care 2017; 21: 13
  • 82 Hartl WH, Jauch KW. Metabolic self-destruction in critically ill patients: origins, mechanisms and therapeutic principles. Nutrition 2014; 30: 261-267
  • 83 Millward DJ. Macronutrient intakes as determinants of dietary protein and amino acid adequacy. J Nutr 2004; 134: 1588S-1596S
  • 84 Yu YM, Wagner DA, Walesreswski JC. et al. A kinetic study of leucine metabolism in severely burned patients. Comparison between a conventional and branched-chain amino acid-enriched nutritional therapy. Ann Surg 1988; 207: 421-429
  • 85 Clowes GH, Randall HT, Cha CJ. Amino acid and energy metabolism in septic and traumatized patients. JPEN J Parenter Enteral Nutr 1980; 4: 195-205
  • 86 Clowes GH, Heideman M, Lindberg B. et al. Effects of parenteral alimentation on amino acid metabolism in septic patients. Surgery 1980; 88: 531-543
  • 87 Iapichino G. [Metabolic aspects of stress: characteristics of trauma and sepsis]. Minerva Anestesiol 1990; 56: 479
  • 88 Ishibashi N, Plank LD, Sando K. et al. Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit Care Med 1998; 26: 1529-1535
  • 89 Leverve X, Guignier M, Carpentier F. et al. Effect of parenteral nutrition on muscle amino acid output and 3-methylhistidine excretion in septic patients. Metabolism 1984; 33: 471-477
  • 90 Davis TK, Neumayr T, Geile K. et al. Citrate anticoagulation during continuous renal replacement therapy in pediatric critical care. Pediatr Crit Care Med 2014; 15: 471-485
  • 91 Oudemans-van Straaten HM, Ostermann M. Bench-to-bedside review: Citrate for continuous renal replacement therapy, from science to practice. Crit Care 2012; 16: 249
  • 92 Charrière M, Ridley E, Hastings J. et al. Propofol sedation substantially increases the caloric and lipid intake in critically ill patients. Nutrition 2017; 42: 64-68
  • 93 Bousie E, van Blokland D, Lammers HJ. et al. Relevance of non-nutritional calories in mechanically ventilated critically ill patients. Eur J Clin Nutr 2016; 70: 1443-1450
  • 94 Kreymann KG, de Heer G, Felbinger T. et al. [Nutrition of critically ill patients in intensive care]. Internist (Berl) 2007; 48: 1084-1092
  • 95 Elke G, Wang M, Weiler N. et al. Close to recommended caloric and protein intake by enteral nutrition is associated with better clinical outcome of critically ill septic patients: secondary analysis of a large international nutrition database. Crit Care 2014; 18: R29
  • 96 Alberda C, Gramlich L, Jones N. et al. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med 2009; 35: 1728-1737
  • 97 Bellomo R, Cass A, Cole L. et al. Calorie intake and patient outcomes in severe acute kidney injury: findings from The Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy (RENAL) study trial. Crit Care 2014; 18: R45
  • 98 Crosara IC, Mélot C, Preiser JC. A J-shaped relationship between caloric intake and survival in critically ill patients. Ann Intensive Care 2015; 5: 37
  • 99 Elke G, Kuhnt E, Ragaller M. et al. Enteral nutrition is associated with improved outcome in patients with severe sepsis. A secondary analysis of the VISEP trial. Med Klin Intensivmed Notfmed 2013; 108: 223-233
  • 100 Kutsogiannis J, Alberda C, Gramlich L. et al. Early use of supplemental parenteral nutrition in critically ill patients: results of an international multicenter observational study. Crit Care Med 2011; 39: 2691-2699
  • 101 Arabi YM, Haddad SH, Tamim HM. et al. Near-target caloric intake in critically ill medical-surgical patients is associated with adverse outcomes. JPEN J Parenter Enteral Nutr 2010; 34: 280-288
  • 102 Al-Dorzi HM, Albarrak A, Ferwana M. et al. Lower versus higher dose of enteral caloric intake in adult critically ill patients: a systematic review and meta-analysis. Crit Care 2016; 20: 358
  • 103 Chelkeba L, Mojtahedzadeh M, Mekonnen Z. Effect of Calories Delivered on Clinical Outcomes in Critically Ill Patients: Systemic Review and Meta-analysis. Indian J Crit Care Med 2017; 21: 376-390
  • 104 Marik PE, Hooper MH. Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: a systematic review and meta-analysis. Intensive Care Med 2016; 42: 316-323
  • 105 Parikh HG, Miller A, Chapman M. et al. Calorie delivery and clinical outcomes in the critically ill: a systematic review and meta-analysis. Crit Care Resusc 2016; 18: 17-24
  • 106 Phan KA, Dux CM, Osland EJ. et al. Effect of hypocaloric normoprotein or trophic feeding versus target full enteral feeding on patient outcomes in critically ill adults: a systematic review. Anaesth Intensive Care 2017; 45: 663-675
  • 107 Ridley EJ, Davies AR, Hodgson CL. et al. Delivery of full predicted energy from nutrition and the effect on mortality in critically ill adults: A systematic review and meta-analysis of randomised controlled trials. Clin Nutr 2017; pii: S0261-5614(17)31358 [Epub ahead of print]
  • 108 Braunschweig CA, Sheean PM, Peterson SJ. et al. Intensive nutrition in acute lung injury: a clinical trial (INTACT). JPEN J Parenter Enteral Nutr 2015; 39: 13-20
  • 109 Bauer P, Charpentier C, Bouchet C. et al. Parenteral with enteral nutrition in the critically ill. Intensive Care Med 2000; 26: 893-900
  • 110 Hartl WH, Parhofer KG, Kuppinger D. et al. S3-Guideline of the German Society for Nutritional Medicine (DGEM) in Cooperation with the GESKES and the AKE. Monitoring of Artificial Nutrition: Specific Aspects. Aktuel Ernahrungsmed 2013; 38: e90-e100
  • 111 Doig GS, Simpson F, Heighes PT. et al. Restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults: a randomised, parallel-group, multicentre, single-blind controlled trial. Lancet Respir Med 2015; 3: 943-952
  • 112 Deer RR, Volpi E. Protein intake and muscle function in older adults. Curr Opin Clin Nutr Metab Care 2015; 18: 248-253
  • 113 Deutz NE, Bauer JM, Barazzoni R. et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 2014; 33: 929-936
  • 114 Mechanick JI, Berger MM. Chronic critical illness nutritional requirements: more, less, or just different. Curr Opin Clin Nutr Metab Care 2014; 17: 162-163
  • 115 Moore FA, Phillips SM, McClain CJ. et al. Nutrition Support for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Nutr Clin Pract 2017; 32: 121S-127S
  • 116 Heyland DK, Cahill N, Day AG. Optimal amount of calories for critically ill patients: depends on how you slice the cake. Crit Care Med 2011; 39: 2619-2626
  • 117 Murray MJ, Murray AB, Murray NJ. et al. Infections during severe primary undernutrition and subsequent refeeding: paradoxical findings. Aust N Z J Med 1995; 25: 507-511
  • 118 Wirth R, Diekmann R, Janssen G. et al. [Refeeding syndrome: Pathophysiology, risk factors, prevention, and treatment]. Internist (Berl) 2018; 59: 326-333
  • 119 Jie B, Jiang ZM, Nolan MT. et al. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition 2012; 28: 1022-1027
  • 120 Taylor SJ, Fettes SB, Jewkes C. et al. Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med 1999; 27: 2525-2531
  • 121 Kreymann KG, DeLegge MH, Luft G. et al. A nutrition strategy for obese ICU patients with special consideration for the reference of protein. Clin Nutr ESPEN 2015; 10: e160-e166
  • 122 Peterson CM, Thomas DM, Blackburn GL. et al. Universal equation for estimating ideal body weight and body weight at any BMI. Am J Clin Nutr 2016; 103: 1197-1203
  • 123 Im Internet: https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile (Letzter Zugriff: 14.07.2018)
  • 124 Hoffer LJ. How much protein do parenteral amino acid mixtures provide. Am J Clin Nutr 2011; 94: 1396-1398
  • 125 Hurt RT, McClave SA, Martindale RG. et al. Summary Points and Consensus Recommendations From the International Protein Summit. Nutr Clin Pract 2017; 32: 142S-151S
  • 126 Bellomo R, Cass A, Cole L. et al. Daily protein intake and patient outcomes in severe acute kidney injury: findings of the randomized evaluation of normal versus augmented level of replacement therapy (RENAL) trial. Blood Purif 2014; 37: 325-334
  • 127 Koekkoek WACK, van Setten CHC, Olthof LE. et al. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study. Clin Nutr 2018; Feb 17. pii: S0261-5614(18)30075-X. DOI: 10.1016/j.clnu.2018.02.012. [Epub ahead of print]
  • 128 Braunschweig CL, Freels S, Sheean PM. et al. Role of timing and dose of energy received in patients with acute lung injury on mortality in the Intensive Nutrition in Acute Lung Injury Trial (INTACT): a post hoc analysis. Am J Clin Nutr 2017; 105: 411-416
  • 129 Mesejo A, Acosta JA, Ortega C. et al. Comparison of a high-protein disease-specific enteral formula with a high-protein enteral formula in hyperglycemic critically ill patients. Clin Nutr 2003; 22: 295-305
  • 130 Ferrie S, Allman-Farinelli M, Daley M. et al. Protein Requirements in the Critically Ill: A Randomized Controlled Trial Using Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2016; 40: 795-805
  • 131 Rugeles SJ, Rueda JD, Díaz CE. et al. Hyperproteic hypocaloric enteral nutrition in the critically ill patient: A randomized controlled clinical trial. Indian J Crit Care Med 2013; 17: 343-349
  • 132 Doig GS, Simpson F, Bellomo R. et al. Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial. Intensive Care Med 2015; 41: 1197-1208
  • 133 Davies ML, Chapple LS, Chapman MJ. et al. Protein delivery and clinical outcomes in the critically ill: a systematic review and meta-analysis. Crit Care Resusc 2017; 19: 117-127
  • 134 Casaer MP, Wilmer A, Hermans G. et al. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis. Am J Respir Crit Care Med 2013; 187: 247-255
  • 135 Vanhorebeek I, Verbruggen S, Casaer MP. et al. Effect of early supplemental parenteral nutrition in the paediatric ICU: a preplanned observational study of post-randomisation treatments in the PEPaNIC trial. Lancet Respir Med 2017; 5: 475-483
  • 136 Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A. et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr 2012; 31: 462-468
  • 137 Bauer J, Biolo G, Cederholm T. et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 2013; 14: 542-559
  • 138 Morton RW, Murphy KT, McKellar SR. et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med 2018; 52: 376-384
  • 139 Wolfe RR, Goodenough RD, Burke JF. et al. Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann Surg 1983; 197: 163-171
  • 140 Collins S, Myatt M, Golden B. Dietary treatment of severe malnutrition in adults. Am J Clin Nutr 1998; 68: 193-199
  • 141 Scheinkestel CD, Kar L, Marshall K. et al. Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition 2003; 19: 909-916
  • 142 Bellomo R, Tan HK, Bhonagiri S. et al. High protein intake during continuous hemodiafiltration: impact on amino acids and nitrogen balance. Int J Artif Organs 2002; 25: 261-268
  • 143 Garlick PJ, McNurlan MA, Patlak CS. Adaptation of protein metabolism in relation to limits to high dietary protein intake. Eur J Clin Nutr 1999; 53 (Suppl. 01) S34-43
  • 144 Druml W, Contzen B, Joannidis M. et al. S1-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der AKE, der GESKES und der DGfN. Aktuel Ernahrungsmed 2015; 40: 21-37
  • 145 Lim VS, Ikizler TA, Raj DS. et al. Does hemodialysis increase protein breakdown? Dissociation between whole-body amino acid turnover and regional muscle kinetics. J Am Soc Nephrol 2005; 16: 862-868
  • 146 Druml W. Metabolic aspects of continuous renal replacement therapies. Kidney Int Suppl 1999; 72: S56-61
  • 147 Frankenfield DC, Badellino MM, Reynolds HN. et al. Amino acid loss and plasma concentration during continuous hemodiafiltration. JPEN J Parenter Enteral Nutr 1993; 17: 551-561
  • 148 Umber A, Wolley MJ, Golper TA. et al. Amino acid losses during sustained low efficiency dialysis in critically ill patients with acute kidney injury. Clin Nephrol 2014; 81: 93-99
  • 149 Yokomatsu A, Fujikawa T, Toya Y. et al. Loss of amino acids into dialysate during hemodialysis using hydrophilic and nonhydrophilic polyester-polymer alloy and polyacrylonitrile membrane dialyzers. Ther Apher Dial 2014; 18: 340-346
  • 150 Wiesen P, Van Overmeire L, Delanaye P. et al. Nutrition disorders during acute renal failure and renal replacement therapy. JPEN J Parenter Enteral Nutr 2011; 35: 217-222
  • 151 Hartl WH, Alpers DH. The trophic effects of substrate, insulin, and the route of administration on protein synthesis and the preservation of small bowel mucosal mass in large mammals. Clin Nutr 2011; 30: 20-27
  • 152 Barret JP, Jeschke MG, Herndon DN. Fatty infiltration of the liver in severely burned pediatric patients: autopsy findings and clinical implications. J Trauma 2001; 51: 736-739
  • 153 Harvey SE, Parrott F, Harrison DA. et al. Trial of the Route of Early Nutritional Support in Critically Ill Adults. N Engl J Med 2014; 371: 1673-1684
  • 154 Reignier J, Boisramé-Helms J, Brisard L. et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet 2017; 391: 133-143
  • 155 Elke G, van Zanten AR, Lemieux M. et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care 2016; 20: 117
  • 156 Harvey SE, Parrott F, Harrison DA. et al. A multicentre, randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of early nutritional support via the parenteral versus the enteral route in critically ill patients (CALORIES). Health Technol Assess 2016; 20: 1-144
  • 157 Piton G, Belon F, Cypriani B. et al. Enterocyte damage in critically ill patients is associated with shock condition and 28-day mortality. Crit Care Med 2013; 41: 2169-2176
  • 158 de Haan JJ, Lubbers T, Derikx JP. et al. Rapid development of intestinal cell damage following severe trauma: a prospective observational cohort study. Crit Care 2009; 13: R86
  • 159 Salloum RM, Copeland EM, Souba WW. Brush border transport of glutamine and other substrates during sepsis and endotoxemia. Ann Surg 1991; 213: 401-409; discussion 409
  • 160 Ali Abdelhamid Y, Cousins CE, Sim JA. et al. Effect of Critical Illness on Triglyceride Absorption. JPEN J Parenter Enteral Nutr 2015; 39: 966-972
  • 161 Chapman MJ, Deane AM. Gastrointestinal dysfunction relating to the provision of nutrition in the critically ill. Curr Opin Clin Nutr Metab Care 2015; 18: 207-212
  • 162 Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb Pathog 2017; 106: 127-138
  • 163 McClave SA, Martindale RG, Rice TW. et al. Feeding the critically ill patient. Crit Care Med 2014; 42: 2600-2610
  • 164 Melis M, Fichera A, Ferguson MK. Bowel necrosis associated with early jejunal tube feeding: A complication of postoperative enteral nutrition. Arch Surg 2006; 141: 701-704
  • 165 Scaife CL, Saffle JR, Morris SE. Intestinal obstruction secondary to enteral feedings in burn trauma patients. J Trauma 1999; 47: 859-863
  • 166 Schloerb PR, Wood JG, Casillan AJ. et al. Bowel necrosis caused by water in jejunal feeding. JPEN J Parenter Enteral Nutr 2004; 28: 27-29
  • 167 Bruns BR, Kozar RA. Feeding the Postoperative Patient on Vasopressor Support: Feeding and Pressor Support. Nutr Clin Pract 2016; 31: 14-17
  • 168 Mongardon N, Singer M. The evolutionary role of nutrition and metabolic support in critical illness. Crit Care Clin 2010; 26: 443-450
  • 169 Patel JJ, Kozeniecki M, Biesboer A. et al. Early Trophic Enteral Nutrition Is Associated With Improved Outcomes in Mechanically Ventilated Patients With Septic Shock: A Retrospective Review. J Intensive Care Med 2016; 31: 471-477
  • 170 Yang S, Wu X, Yu W. et al. Early enteral nutrition in critically ill patients with hemodynamic instability: an evidence-based review and practical advice. Nutr Clin Pract 2014; 29: 90-96
  • 171 Flordelís Lasierra JL, Pérez-Vela JL, Umezawa Makikado LD. et al. Early enteral nutrition in patients with hemodynamic failure following cardiac surgery. JPEN J Parenter Enteral Nutr 2015; 39: 154-162
  • 172 Piton G, Cypriani B, Regnard J. et al. Catecholamine use is associated with enterocyte damage in critically ill patients. Shock 2015; 43: 437-442
  • 173 Kozeniecki M, McAndrew N, Patel JJ. Process-Related Barriers to Optimizing Enteral Nutrition in a Tertiary Medical Intensive Care Unit. Nutr Clin Pract 2016; 31: 80-85
  • 174 Alkhawaja S, Martin C, Butler RJ. et al. Post-pyloric versus gastric tube feeding for preventing pneumonia and improving nutritional outcomes in critically ill adults. Cochrane Database Syst Rev 2015 CD008875
  • 175 Li Z, Qi J, Zhao X. et al. Risk-Benefit Profile of Gastric vs Transpyloric Feeding in Mechanically Ventilated Patients: A Meta-Analysis. Nutr Clin Pract 2016; 31: 91-98
  • 176 Deane AM, Adam MD, Dhaliwal R. et al. Comparisons between intragastric and small intestinal delivery of enteral nutrition in the critically ill: a systematic review and meta-analysis. Crit Care 2013; 17: R125
  • 177 Wang D, Zheng SQ, Chen XC. et al. Comparisons between small intestinal and gastric feeding in severe traumatic brain injury: a systematic review and meta-analysis of randomized controlled trials. J Neurosurg 2015; 123: 1194-1201
  • 178 Alhazzani W, Almasoud A, Jaeschke R. et al. Small bowel feeding and risk of pneumonia in adult critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care 2013; 17: R127
  • 179 Schlein K. Gastric Versus Small Bowel Feeding in Critically Ill Adults. Nutr Clin Pract 2016; 31: 514-522
  • 180 Lee JS, Kwok T, Chui PY. et al. Can continuous pump feeding reduce the incidence of pneumonia in nasogastric tube-fed patients? A randomized controlled trial. Clin Nutr 2010; 29: 453-458
  • 181 MacLeod JB, Lefton J, Houghton D. et al. Prospective randomized control trial of intermittent versus continuous gastric feeds for critically ill trauma patients. J Trauma 2007; 63: 57-61
  • 182 Steevens EC, Lipscomb AF, Poole GV. et al. Comparison of continuous vs intermittent nasogastric enteral feeding in trauma patients: perceptions and practice. Nutr Clin Pract 2002; 17: 118-122
  • 183 Kadamani I, Itani M, Zahran E. et al. Incidence of aspiration and gastrointestinal complications in critically ill patients using continuous versus bolus infusion of enteral nutrition: a pseudo-randomised controlled trial. Aust Crit Care 2014; 27: 188-193
  • 184 Marik PE. Feeding critically ill patients the right ‘whey’: thinking outside of the box. A personal view. Ann Intensive Care 2015; 5: 51
  • 185 Evans DC, Forbes R, Jones C. et al. Continuous versus bolus tube feeds: Does the modality affect glycemic variability, tube feeding volume, caloric intake, or insulin utilization. Int J Crit Illn Inj Sci 2016; 6: 9-15
  • 186 Patel JJ, Rosenthal MD, Heyland DK. Intermittent versus continuous feeding in critically ill adults. Curr Opin Clin Nutr Metab Care 2018; 21: 116-120
  • 187 Brener W, Hendrix TR, McHugh PR. Regulation of the gastric emptying of glucose. Gastroenterology 1983; 85: 76-82
  • 188 Meyer JH, Ohashi H, Jehn D. et al. Size of liver particles emptied from the human stomach. Gastroenterology 1981; 80: 1489-1496
  • 189 Bonten MJ, Gaillard CA, van der Hulst R. et al. Intermittent enteral feeding: the influence on respiratory and digestive tract colonization in mechanically ventilated intensive-care-unit patients. Am J Respir Crit Care Med 1996; 154: 394-399
  • 190 Gowardman J, Sleigh J, Barnes N. et al. Intermittent enteral nutrition – a comparative study examining the effect on gastric pH and microbial colonization rates. Anaesth Intensive Care 2003; 31: 28-33
  • 191 Spilker CA, Hinthorn DR, Pingleton SK. Intermittent enteral feeding in mechanically ventilated patients. The effect on gastric pH and gastric cultures. Chest 1996; 110: 243-248
  • 192 Bein T, Bischoff M, Brückner U. et al. S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders: Revision 2015: S2e guideline of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Anaesthesist 2015; 64 (Suppl. 01) 1-26
  • 193 Guérin C, Reignier J, Richard JC. et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368: 2159-2168
  • 194 Linn DD, Beckett RD, Foellinger K. Administration of enteral nutrition to adult patients in the prone position. Intensive Crit Care Nurs 2015; 31: 38-43
  • 195 Reignier J, Thenoz-Jost N, Fiancette M. et al. Early enteral nutrition in mechanically ventilated patients in the prone position. Crit Care Med 2004; 32: 94-99
  • 196 Reignier J, Dimet J, Martin-Lefevre L. et al. Before-after study of a standardized ICU protocol for early enteral feeding in patients turned in the prone position. Clin Nutr 2010; 29: 210-216
  • 197 Saez de la Fuente I, Saez de la Fuente J, Quintana Estelles MD. et al. Enteral Nutrition in Patients Receiving Mechanical Ventilation in a Prone Position. JPEN J Parenter Enteral Nutr 2016; 40: 250-255
  • 198 van der Voort PH, Zandstra DF. Enteral feeding in the critically ill: comparison between the supine and prone positions: a prospective crossover study in mechanically ventilated patients. Crit Care 2001; 5: 216-220
  • 199 Burlew CC, Moore EE, Cuschieri J. et al. Who should we feed? Western Trauma Association multi-institutional study of enteral nutrition in the open abdomen after injury. J Trauma Acute Care Surg 2012; 73: 1380-1387; discussion 1387
  • 200 Collier B, Guillamondegui O, Cotton B. et al. Feeding the open abdomen. JPEN J Parenter Enteral Nutr 2007; 31: 410-415
  • 201 Bernardi M, Caraceni P, Navickis RJ. Does the evidence support a survival benefit of albumin infusion in patients with cirrhosis undergoing large-volume paracentesis. Expert Rev Gastroenterol Hepatol 2017; 11: 191-192
  • 202 Plauth M, Schütz T, Pirlich M. et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES, der AKE und der DGVS. Aktuel Ernahrungsmed 2014; 39: e1-e42
  • 203 Westhoff M, Schönhofer B, Neumann P. et al. [Noninvasive Mechanical Ventilation in Acute Respiratory Failure]. Pneumologie 2015; 69: 719-756
  • 204 Kogo M, Nagata K, Morimoto T. et al. Enteral Nutrition During Noninvasive Ventilation: We Should Go Deeper in the Investigation – Reply. Respir Care 2017; 62: 1119-1120
  • 205 Kogo M, Nagata K, Morimoto T. et al. Enteral Nutrition Is a Risk Factor for Airway Complications in Subjects Undergoing Noninvasive Ventilation for Acute Respiratory Failure. Respir Care 2017; 62: 459-467
  • 206 Patel BK, Wolfe KS, Pohlman AS. et al. Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2016; 315: 2435-2441
  • 207 Terzi N, Darmon M, Reignier J. et al. Initial nutritional management during noninvasive ventilation and outcomes: a retrospective cohort study. Crit Care 2017; 21: 293
  • 208 Weimann A, Breitenstein S, Breuer JP. et al. [Clinical nutrition in surgery. Guidelines of the German Society for Nutritional Medicine]. Chirurg 2014; 85: 320-326
  • 209 Wirth RD, Jäger R, Warnecke M. et al. Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES, der AKE, der DGN und der DGG. Klinische Ernährung in der Neurologie –. Aktuel Ernahrungsmed 2013; 38: e49-e89
  • 210 Weimann A, Braunert M, Müller T. et al. Feasibility and safety of needle catheter jejunostomy for enteral nutrition in surgically treated severe acute pancreatitis. JPEN J Parenter Enteral Nutr 2004; 28: 324-327
  • 211 Chapman MJ, Nguyen NQ, Deane AM. Gastrointestinal dysmotility: evidence and clinical management. Curr Opin Clin Nutr Metab Care 2013; 16: 209-216
  • 212 Li EC, Esterly JS, Pohl S. et al. Drug-induced QT-interval prolongation: considerations for clinicians. Pharmacotherapy 2010; 30: 684-701
  • 213 Reintam Blaser A, Malbrain ML, Starkopf J. et al. Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems. Intensive Care Med 2012; 38: 384-394
  • 214 MacLaren R, Kiser TH, Fish DN. et al. Erythromycin vs metoclopramide for facilitating gastric emptying and tolerance to intragastric nutrition in critically ill patients. JPEN J Parenter Enteral Nutr 2008; 32: 412-419
  • 215 Nguyen NQ, Chapman M, Fraser RJ. et al. Prokinetic therapy for feed intolerance in critical illness: one drug or two. Crit Care Med 2007; 35: 2561-2567
  • 216 Taylor SJ, Allan K, McWilliam H. et al. A randomised controlled feasibility and proof-of-concept trial in delayed gastric emptying when metoclopramide fails: We should revisit nasointestinal feeding versus dual prokinetic treatment: Achieving goal nutrition in critical illness and delayed gastric emptying: Trial of nasointestinal feeding versus nasogastric feeding plus prokinetics. Clin Nutr ESPEN 2016; 14: 1-8
  • 217 Lewis K, Alqahtani Z, Mcintyre L. et al. The efficacy and safety of prokinetic agents in critically ill patients receiving enteral nutrition: a systematic review and meta-analysis of randomized trials. Crit Care 2016; 20: 259
  • 218 Gholipour Baradari A, Alipour A, Firouzian A. et al. A Double-Blind Randomized Clinical Trial Comparing the Effect of Neostigmine and Metoclopramide on Gastric Residual Volume of Mechanically Ventilated ICU Patients. Acta Inform Med 2016; 24: 385-389
  • 219 de Brito-Ashurst I, Preiser JC. Diarrhea in Critically Ill Patients: The Role of Enteral Feeding. JPEN J Parenter Enteral Nutr 2016; 40: 913-923
  • 220 Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol 1997; 32: 920-924
  • 221 Heidegger CP, Graf S, Perneger T. et al. The burden of diarrhea in the intensive care unit (ICU-BD). A survey and observational study of the caregivers’ opinions and workload. Int J Nurs Stud 2016; 59: 163-168
  • 222 Tirlapur N, Puthucheary ZA, Cooper JA. et al. Diarrhoea in the critically ill is common, associated with poor outcome, and rarely due to Clostridium difficile. Sci Rep 2016; 6: 24691
  • 223 Thibault R, Graf S, Clerc A. et al. Diarrhoea in the ICU: respective contribution of feeding and antibiotics. Crit Care 2013; 17: R153
  • 224 Ferrie S, East V. Managing diarrhoea in intensive care. Aust Crit Care 2007; 20: 7-13
  • 225 Montejo JC. Enteral nutrition-related gastrointestinal complications in critically ill patients: a multicenter study. The Nutritional and Metabolic Working Group of the Spanish Society of Intensive Care Medicine and Coronary Units. Crit Care Med 1999; 27: 1447-1453
  • 226 Halmos EP. Role of FODMAP content in enteral nutrition-associated diarrhea. J Gastroenterol Hepatol 2013; 28 (Suppl. 04) 25-28
  • 227 Jakob SM, Bütikofer L, Berger D. et al. A randomized controlled pilot study to evaluate the effect of an enteral formulation designed to improve gastrointestinal tolerance in the critically ill patient – the SPIRIT trial. Crit Care 2017; 21: 140
  • 228 Weimann A, Braga M, Carli F. et al. ESPEN guideline: Clinical nutrition in surgery. Clin Nutr 2017; 36: 623-650
  • 229 Yang G, Wu XT, Zhou Y. et al. Application of dietary fiber in clinical enteral nutrition: a meta-analysis of randomized controlled trials. World J Gastroenterol 2005; 11: 3935-3938
  • 230 Kamarul Zaman M, Chin KF, Rai V. et al. Fiber and prebiotic supplementation in enteral nutrition: A systematic review and meta-analysis. World J Gastroenterol 2015; 21: 5372-5381
  • 231 Chittawatanarat K, Pokawinpudisnun P, Polbhakdee Y. Mixed fibers diet in surgical ICU septic patients. Asia Pac J Clin Nutr 2010; 19: 458-464
  • 232 Spapen H, Diltoer M, Van Malderen C. et al. Soluble fiber reduces the incidence of diarrhea in septic patients receiving total enteral nutrition: a prospective, double-blind, randomized, and controlled trial. Clin Nutr 2001; 20: 301-305
  • 233 Hart GK, Dobb GJ. Effect of a fecal bulking agent on diarrhea during enteral feeding in the critically ill. JPEN J Parenter Enteral Nutr 1988; 12: 465-468
  • 234 Heather DJ, Howell L, Montana M. et al. Effect of a bulk-forming cathartic on diarrhea in tube-fed patients. Heart Lung 1991; 20: 409-413
  • 235 Rushdi TA, Pichard C, Khater YH. Control of diarrhea by fiber-enriched diet in ICU patients on enteral nutrition: a prospective randomized controlled trial. Clin Nutr 2004; 23: 1344-1352
  • 236 Shimizu K, Ogura H, Asahara T. et al. Gastrointestinal dysmotility is associated with altered gut flora and septic mortality in patients with severe systemic inflammatory response syndrome: a preliminary study. Neurogastroenterol Motil 2011; 23: 330-335, e157
  • 237 Joint FAO Working Group. Guidelines for the evaluation of probiotics in food: report of a joint fao/who working group on drafting guidelines for the evaluation of probiotics in food. Im Internet: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf (Letzter Zugriff: 14.07.2018)
  • 238 Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and ‘dysbiosis therapy’ in critical illness. Curr Opin Crit Care 2016; 22: 347-353
  • 239 Gu WJ, Deng T, Gong YZ. et al. The effects of probiotics in early enteral nutrition on the outcomes of trauma: a meta-analysis of randomized controlled trials. JPEN J Parenter Enteral Nutr 2013; 37: 310-317
  • 240 Falcão de Arruda IS, de Aguilar-Nascimento JE. Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci (Lond) 2004; 106: 287-292
  • 241 Manzanares W, Lemieux M, Langlois PL. et al. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care 2016; 19: 262
  • 242 Weng H, Li JG, Mao Z. et al. Probiotics for Preventing Ventilator-Associated Pneumonia in Mechanically Ventilated Patients: A Meta-Analysis with Trial Sequential Analysis. Front Pharmacol 2017; 8: 717
  • 243 Bo L, Li J, Tao T. et al. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst Rev 2014 CD009066
  • 244 Besselink MG, van Santvoort HC, Buskens E. et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 2008; 371: 651-659
  • 245 Lherm T, Monet C, Nougière B. et al. Seven cases of fungemia with Saccharomyces boulardii in critically ill patients. Intensive Care Med 2002; 28: 797-801
  • 246 Heidegger CP, Berger MM, Graf S. et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet 2013; 381: 385-393
  • 247 Heyland DK, MacDonald S, Keefe L. et al. Total parenteral nutrition in the critically ill patient: a meta-analysis. JAMA 1998; 280: 2013-2019
  • 248 Braunschweig CL, Levy P, Sheean PM. et al. Enteral compared with parenteral nutrition: a meta- analysis. Am J Clin Nutr 2001; 74: 534-542
  • 249 Elke G, Schadler D, Engel C. et al. Current practice in nutritional support and its association with mortality in septic patients – results from a national, prospective, multicenter study. Crit Care Med 2008; 36: 1762-1767
  • 250 Casaer MP, Mesotten D, Hermans G. et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med 2011; 365: 506-517
  • 251 Doig GS, Simpson F, Sweetman EA. et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA 2013; 309: 2130-2138
  • 252 Boullata JI, Gilbert K, Sacks G. et al. A.S.P.E.N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing. JPEN J Parenter Enteral Nutr 2014; 38: 334-377
  • 253 Kochevar M, Guenter P, Holcombe B. et al. ASPEN statement on parenteral nutrition standardization. JPEN J Parenter Enteral Nutr 2007; 31: 441-448
  • 254 Pontes-Arruda A, Dos Santos MC, Martins LF. et al. Influence of parenteral nutrition delivery system on the development of bloodstream infections in critically ill patients: an international, multicenter, prospective, open-label, controlled study – EPICOS study. JPEN J Parenter Enteral Nutr 2012; 36: 574-586
  • 255 Turpin RS, Canada T, Rosenthal V. et al. Bloodstream infections associated with parenteral nutrition preparation methods in the United States: a retrospective, large database analysis. JPEN J Parenter Enteral Nutr 2012; 36: 169-176
  • 256 Pontes-Arruda A, Zaloga G, Wischmeyer P. et al. Is there a difference in bloodstream infections in critically ill patients associated with ready-to-use versus compounded parenteral nutrition. Clin Nutr 2012; 31: 728-734
  • 257 Yu J, Wu G, Tang Y. et al. Efficacy, Safety, and Preparation of Standardized Parenteral Nutrition Regimens: Three-Chamber Bags vs Compounded Monobags – A Prospective, Multicenter, Randomized, Single-Blind Clinical Trial. Nutr Clin Pract 2017; 32: 545-551
  • 258 Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) am Robert Koch-Institut (RKI). Prävention von Infektionen, die von Gefäßkathetern ausgehen. Teil 1 – Nichtgetunnelte zentralvenöse Katheter. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60: 171-206
  • 259 Nothacker M, Khan C, Koltermann K. et al. Evidenzbericht Analyse von Metaanalysen zur perioperativen klinischen Ernährung. Ärztliches Zentrum für Qualität in der Medizin; 2012. Im Internet: http://www.aezq.de/mdb/edocs/pdf/literatur/evidenzbericht-bewertung-metaanalysen-perioperativer-kuenstlicher-ernaehrung.pdf (Letzter Zugriff: 14.07.2018)
  • 260 Hamani D, Kuhn M, Charrueau C. et al. Interactions between ω3 polyunsaturated fatty acids and arginine on nutritional and immunological aspects in severe inflammation. Clin Nutr 2010; 29: 654-662
  • 261 Galbán C, Montejo JC, Mesejo A. et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 2000; 28: 643-648
  • 262 Heyland DK, Novak F, Drover JW. et al. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 2001; 286: 944-953
  • 263 Montejo JC, Zarazaga A, López-Martínez J. et al. Immunonutrition in the intensive care unit. A systematic review and consensus statement. Clin Nutr 2003; 22: 221-233
  • 264 Marik PE, Zaloga GP. Immunonutrition in high-risk surgical patients: a systematic review and analysis of the literature. JPEN J Parenter Enteral Nutr 2010; 34: 378-386
  • 265 Beale RJ, Sherry T, Lei K. et al. Early enteral supplementation with key pharmaconutrients improves Sequential Organ Failure Assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial. Crit Care Med 2008; 36: 131-144
  • 266 van Zanten AR, Sztark F, Kaisers UX. et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA 2014; 312: 514-524
  • 267 Gadek JE, DeMichele SJ, Karlstad MD. et al. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 1999; 27: 1409-1420
  • 268 Singer P, Theilla M, Fisher H. et al. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med 2006; 34: 1033-1038
  • 269 Pontes-Arruda A, Aragão AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med 2006; 34: 2325-2333
  • 270 Pontes-Arruda A, Demichele S, Seth A. et al. The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN J Parenter Enteral Nutr 2008; 32: 596-605
  • 271 Rice TW, Wheeler AP, Thompson BT. et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 2011; 306: 1574-1581
  • 272 Li C, Bo L, Liu W. et al. Enteral Immunomodulatory Diet (Omega-3 Fatty Acid, γ-Linolenic Acid and Antioxidant Supplementation) for Acute Lung Injury and Acute Respiratory Distress Syndrome: An Updated Systematic Review and Meta-Analysis. Nutrients 2015; 7: 5572-5585
  • 273 Santacruz CA, Orbegozo D, Vincent JL. et al. Modulation of Dietary Lipid Composition During Acute Respiratory Distress Syndrome: Systematic Review and Meta-Analysis. JPEN J Parenter Enteral Nutr 2015; 39: 837-846
  • 274 Westman EC. Is dietary carbohydrate essential for human nutrition. Am J Clin Nutr 2002; 75: 951-953; author reply 953
  • 275 Barazzoni R, Deutz NE, Biolo G. et al. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clin Nutr 2017; 36: 355-363
  • 276 Keller U. [The sugar substitutes fructose and sorbite: an unnecessary risk in parenteral nutrition]. Schweiz Med Wochenschr 1989; 119: 101-106
  • 277 Ladefoged K, Berthelsen P, Brøckner-Nielsen J. et al. Fructose, xylitol and glucose in total parenteral nutrition. Intensive Care Med 1982; 8: 19-23
  • 278 Leutenegger AF, Goschke H, Stutz K. et al. Comparison between glucose and a combination of glucose, fructose, and xylitol as carbohydrates for total parenteral nutrition of surgical intensive care patients. Am J Surg 1977; 133: 199-205
  • 279 Preiser JC, Ichai C, Orban JC. et al. Metabolic response to the stress of critical illness. Br J Anaesth 2014; 113: 945-954
  • 280 Preiser JC, van Zanten AR, Berger MM. et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care 2015; 19: 35
  • 281 Mundi MS, Nystrom EM, Hurley DL. et al. Management of Parenteral Nutrition in Hospitalized Adult Patients [Formula: see text]. JPEN J Parenter Enteral Nutr 2017; 41: 535-549
  • 282 Chambrier C, Laville M, Rhzioual Berrada K. et al. Insulin sensitivity of glucose and fat metabolism in severe sepsis. Clin Sci (Lond) 2000; 99: 321-328
  • 283 Saeed M, Carlson GL, Little RA. et al. Selective impairment of glucose storage in human sepsis. Br J Surg 1999; 86: 813-821
  • 284 Ayers P, Adams S, Boullata J. et al. A.S.P.E.N. parenteral nutrition safety consensus recommendations: translation into practice. Nutr Clin Pract 2014; 29: 277-282
  • 285 Bolder U, Ebener C, Hauner H. et al. 5. Kohlenhydrate. Leitlinie Parenterale Ernährung der DGEM. Aktuel Ernahrungsmed 2007; 32: S18-S21
  • 286 Mirtallo J, Canada T, Johnson D. et al. Safe practices for parenteral nutrition. JPEN J Parenter Enteral Nutr 2004; 28: S39-70
  • 287 Bier DM, Brosnan JT, Flatt JP. et al. Report of the IDECG Working Group on lower and upper limits of carbohydrate and fat intake. International Dietary Energy Consultative Group. Eur J Clin Nutr 1999; 53 (Suppl. 01) S177-178
  • 288 Green P, Theilla M, Singer P. Lipid metabolism in critical illness. Curr Opin Clin Nutr Metab Care 2016; 19: 111-115
  • 289 Calder PC, Deckelbaum RJ. Dietary lipids: more than just a source of calories. Curr Opin Clin Nutr Metab Care 1999; 2: 105-107
  • 290 Furukawa K, Yamamori H, Takagi K. et al. Influences of soybean oil emulsion on stress response and cell-mediated immune function in moderately or severely stressed patients. Nutrition 2002; 18: 235-240
  • 291 Martin JM, Stapleton RD. Omega-3 fatty acids in critical illness. Nutr Rev 2010; 68: 531-541
  • 292 Mayer K, Seeger W. Fish oil in critical illness. Curr Opin Clin Nutr Metab Care 2008; 11: 121-127
  • 293 Stapleton RD, Martin JM, Mayer K. Fish oil in critical illness: mechanisms and clinical applications. Crit Care Clin 2010; 26: 501-514, ix
  • 294 Schwab JM, Chiang N, Arita M. et al. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 2007; 447: 869-874
  • 295 Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510: 92-101
  • 296 Hecker M, Linder T, Ott J. et al. Immunomodulation by lipid emulsions in pulmonary inflammation: a randomized controlled trial. Crit Care 2015; 19: 226
  • 297 Canadian Clinical Practice Guidelines 2013. Im Internet: https://criticalcarenutrition.com/docs/cpg/9.2lipidtype_May%202009.pdf (Letzter Zugriff: 14.07.2018)
  • 298 Garnacho-Montero J, Ortiz-Leyba C, Jiménez-Jiménez FJ. et al. Clinical and metabolic effects of two lipid emulsions on the parenteral nutrition of septic patients. Nutrition 2002; 18: 134-138
  • 299 Iovinelli G, Marinangeli F, Ciccone A. et al. Parenteral nutrition in ventilated patients with chronic obstructive pulmonary disease: long chain vs medium chain triglycerides. Minerva Anestesiol 2007; 73: 65-76
  • 300 Lindgren BF, Ruokonen E, Magnusson-Borg K. et al. Nitrogen sparing effect of structured triglycerides containing both medium- and long-chain fatty acids in critically ill patients; a double blind randomized controlled trial. Clin Nutr 2001; 20: 43-48
  • 301 Nijveldt RJ, Tan AM, Prins HA. et al. Use of a mixture of medium-chain triglycerides and longchain triglycerides versus long-chain triglycerides in critically ill surgical patients: a randomized prospective double-blind study. Clin Nutr 1998; 17: 23-29
  • 302 Friesecke S, Lotze C, Köhler J. et al. Fish oil supplementation in the parenteral nutrition of critically ill medical patients: a randomised controlled trial. Intensive Care Med 2008; 34: 1411-1420
  • 303 Grecu I, Mirea L, Grintescu I. Parenteral fish oil supplementation in patients with abdominal sepsis [abstract]. Clin Nutr 2003; 22 (Suppl. 01) S23
  • 304 Wang X, Li W, Li N. et al. Omega-3 fatty acids-supplemented parenteral nutrition decreases hyperinflammatory response and attenuates systemic disease sequelae in severe acute pancreatitis: a randomized and controlled study. JPEN J Parenter Enteral Nutr 2008; 32: 236-241
  • 305 García-de-Lorenzo A, Denia R, Atlan P. et al. Parenteral nutrition providing a restricted amount of linoleic acid in severely burned patients: a randomised double-blind study of an olive oil-based lipid emulsion v. medium/long-chain triacylglycerols. Br J Nutr 2005; 94: 221-230
  • 306 Huschak G, Zur Nieden K, Hoell T. et al. Olive oil based nutrition in multiple trauma patients: a pilot study. Intensive Care Med 2005; 31: 1202-1208
  • 307 Kari A, Hersio K, Takala J. et al. Comparison of two long-chain triglyceride fat emulsions in parenteral nutrition of critically ill patients. Current Therapeutic Research 1998; 45: 1077-1087
  • 308 Edmunds CE, Brody RA, Parrott JS. et al. The effects of different IV fat emulsions on clinical outcomes in critically ill patients. Crit Care Med 2014; 42: 1168-1177
  • 309 Palmer AJ, Ho CK, Ajibola O. et al. The role of ω-3 fatty acid supplemented parenteral nutrition in critical illness in adults: a systematic review and meta-analysis. Crit Care Med 2013; 41: 307-316
  • 310 Manzanares W, Langlois PL, Dhaliwal R. et al. Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and meta-analysis. Crit Care 2015; 19: 167
  • 311 Grau-Carmona T, Bonet-Saris A, García-de-Lorenzo A. et al. Influence of n-3 polyunsaturated fatty acids enriched lipid emulsions on nosocomial infections and clinical outcomes in critically ill patients: ICU lipids study. Crit Care Med 2015; 43: 31-39
  • 312 Abbasoglu O, Hardy G, Manzanares W. et al. Fish Oil-Containing Lipid Emulsions in Adult Parenteral Nutrition: A Review of the Evidence. JPEN J Parenter Enteral Nutr 2017; 148607117721907
  • 313 Lu C, Sharma S, McIntyre L. et al. Omega-3 supplementation in patients with sepsis: a systematic review and meta-analysis of randomized trials. Ann Intensive Care 2017; 7: 58
  • 314 Pontes-Arruda A, Martins LF, de Lima SM. et al. Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid and antioxidants in the early treatment of sepsis: results from a multicenter, prospective, randomized, double-blinded, controlled study: the INTERSEPT study. Crit Care 2011; 15: R144
  • 315 Stapleton RD, Martin TR, Weiss NS. et al. A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit Care Med 2011; 39: 1655-1662
  • 316 Felbinger TW, Weigand MA, Mayer K. Supplementation in acute lung injury. JAMA 2012; 307: 144, author reply 145–146
  • 317 Zhu D, Zhang Y, Li S. et al. Enteral omega-3 fatty acid supplementation in adult patients with acute respiratory distress syndrome: a systematic review of randomized controlled trials with meta-analysis and trial sequential analysis. Intensive Care Med 2014; 40: 504-512
  • 318 Manzanares W, Dhaliwal R, Jurewitsch B. et al. Parenteral fish oil lipid emulsions in the critically ill: a systematic review and meta-analysis. JPEN J Parenter Enteral Nutr 2014; 38: 20-28
  • 319 Calder PC, Adolph M, Deutz NE. et al. Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clin Nutr; 2017 Sep 7. pii: S0261-5614(17)30315
  • 320 Wichmann MW, Thul P, Czarnetzki HD. et al. Evaluation of clinical safety and beneficial effects of a fish oil containing lipid emulsion (Lipoplus, MLF541): data from a prospective, randomized, multicenter trial. Crit Care Med 2007; 35: 700-706
  • 321 Heller AR, Rössler S, Litz RJ. et al. Omega-3 fatty acids improve the diagnosis-related clinical outcome. Crit Care Med 2006; 34: 972-979
  • 322 Hayes BD, Gosselin S, Calello DP. et al. Systematic review of clinical adverse events reported after acute intravenous lipid emulsion administration. Clin Toxicol (Phila) 2016; 54: 365-404
  • 323 Derenski K, Catlin J, Allen L. Parenteral Nutrition Basics for the Clinician Caring for the Adult Patient. Nutr Clin Pract 2016; 31: 578-595
  • 324 Mirtallo JM, Dasta JF, Kleinschmidt KC. et al. State of the art review: Intravenous fat emulsions: Current applications, safety profile, and clinical implications. Ann Pharmacother 2010; 44: 688-700
  • 325 Suchner U, Katz DP, Fürst P. et al. Effects of intravenous fat emulsions on lung function in patients with acute respiratory distress syndrome or sepsis. Crit Care Med 2001; 29: 1569-1574
  • 326 Suchner U, Katz DP, Fürst P. et al. Impact of sepsis, lung injury, and the role of lipid infusion on circulating prostacyclin and thromboxane A(2). Intensive Care Med 2002; 28: 122-129
  • 327 Lekka ME, Liokatis S, Nathanail C. et al. The impact of intravenous fat emulsion administration in acute lung injury. Am J Respir Crit Care Med 2004; 169: 638-644
  • 328 Barr LH, Dunn GD, Brennan MF. Essential fatty acid deficiency during total parenteral nutrition. Ann Surg 1981; 193: 304-311
  • 329 Reimund JM, Rahmi G, Escalin G. et al. Efficacy and safety of an olive oil-based intravenous fat emulsion in adult patients on home parenteral nutrition. Aliment Pharmacol Ther 2005; 21: 445-454
  • 330 Goodgame JT, Lowry SF, Brennan MF. Essential fatty acid deficiency in total parenteral nutrition: time course of development and suggestions for therapy. Surgery 1978; 84: 271-277
  • 331 al-Saady NM. Does dietary manipulation influence weaning from artificial ventilation. Intensive Care Med 1994; 20: 463-465
  • 332 van den Berg B, Bogaard JM, Hop WC. High fat, low carbohydrate, enteral feeding in patients weaning from the ventilator. Intensive Care Med 1994; 20: 470-475
  • 333 Garrel DR, Razi M, Larivière F. et al. Improved clinical status and length of care with low-fat nutrition support in burn patients. JPEN J Parenter Enteral Nutr 1995; 19: 482-491
  • 334 Canadian Clinical Practice Guidelines 2013. Im Internet: https://criticalcarenutrition.com/docs/cpgs2012/4.2a.pdf (Letzter Zugriff: 14.07.2018)
  • 335 Canadian Clinical Practice Guidelines 2013. Im Internet: https://criticalcarenutrition.com/docs/cpgs2012/4.2b.pdf (Letzter Zugriff: 14.07.2018)
  • 336 Boulétreau P, Chassard D, Allaouchiche B. et al. Glucose-lipid ratio is a determinant of nitrogen balance during total parenteral nutrition in critically ill patients: a prospective, randomized, multicenter blind trial with an intention-to-treat analysis. Intensive Care Med 2005; 31: 1394-1400
  • 337 Nourmohammadi M, Moghadam OM, Lahiji MN. et al. Effect of Fat-based versus Carbohydrate-based Enteral Feeding on Glycemic Control in Critically Ill Patients: A Randomized Clinical Trial. Indian J Crit Care Med 2017; 21: 500-505
  • 338 World Health Organization, Food and Agriculture Organization of the United Nations, United Nations University. Protein and amino acid requirements in human nutrition. Report of a joint FAO/WHO/UNU expert consultation (WHO Technical Report Series 935). In: Organization WH (Ed). Geneva: WHO Press; 2007: 1-265
  • 339 Vinnars E, Hammarqvist F. 25th Arvid Wretlind’s Lecture – Silver anniversary, 25 years with ESPEN, the history of nutrition. Clin Nutr 2004; 23: 955-962
  • 340 Fürst P. Criteria underlying the formulation of aminoacid regimens: established and new approaches. In: Kleinberger G, Deutsch E. ed. New aspects of clinical nutrition. Basel: Karger; 1983: 361-376
  • 341 Stroud M. Protein and the critically ill; do we know what to give. Proc Nutr Soc 2007; 66: 378-383
  • 342 Ochoa Gautier JB, Martindale RG, Rugeles SJ. et al. How Much and What Type of Protein Should a Critically Ill Patient Receive. Nutr Clin Pract 2017; 32: 6S-14S
  • 343 Coeffier M, Dechelotte P. The role of glutamine in intensive care unit patients: mechanisms of action and clinical outcome. Nutr Rev 2005; 63: 65-69
  • 344 Wischmeyer PE. Glutamine: role in critical illness and ongoing clinical trials. Curr Opin Gastroenterol 2008; 24: 190-197
  • 345 Oudemans-van Straaten HM, Bosman RJ, Treskes M. et al. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 2001; 27: 84-90
  • 346 Van den Berghe G. Low glutamine levels during critical illness – adaptive or maladaptive?. N Engl J Med 2013; 368: 1549-1550
  • 347 Heyland D, Muscedere J, Wischmeyer PE. et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 2013; 368: 1489-1497
  • 348 van Zanten AR, Dhaliwal R, Garrel D. et al. Enteral glutamine supplementation in critically ill patients: a systematic review and meta-analysis. Crit Care 2015; 19: 294
  • 349 Mottaghi A, Yeganeh MZ, Golzarand M. et al. Efficacy of glutamine-enriched enteral feeding formulae i n critically ill patients: a systematic review and meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr 2016; 25: 504-512
  • 350 Wernerman J, Kirketeig T, Andersson B. et al. Scandinavian glutamine trial: a pragmatic multi-centre randomised clinical trial of intensive care unit patients. Acta Anaesthesiol Scand 2011; 55: 812-818
  • 351 Andrews PJ, Avenell A, Noble DW. et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ 2011; 342: d1542
  • 352 Pasin L, Landoni G, Zangrillo A. Glutamine and antioxidants in critically ill patients. N Engl J Med 2013; 369: 482-484
  • 353 Bollhalder L, Pfeil AM, Tomonaga Y. et al. A systematic literature review and meta-analysis of randomized clinical trials of parenteral glutamine supplementation. Clin Nutr 2013; 32: 213-223
  • 354 Fadda V, Maratea D, Trippoli S. et al. Temporal trend of short-term mortality in severely ill patients receiving parenteral glutamine supplementation. Clin Nutr 2013; 32: 492-493
  • 355 Wischmeyer PE, Dhaliwal R, McCall M. et al. Parenteral glutamine supplementation in critical illness: a systematic review. Crit Care 2014; 18: R76
  • 356 Tao KM, Li XQ, Yang LQ. et al. Glutamine supplementation for critically ill adults. Cochrane Database Syst Rev 2014 CD010050
  • 357 Oldani M, Sandini M, Nespoli L. et al. Glutamine Supplementation in Intensive Care Patients: A Meta-Analysis of Randomized Clinical Trials. Medicine (Baltimore) 2015; 94: e1319
  • 358 Chen QH, Yang Y, He HL. et al. The effect of glutamine therapy on outcomes in critically ill patients: a meta-analysis of randomized controlled trials. Crit Care 2014; 18: R8
  • 359 Stehle P, Ellger B, Kojic D. et al. Glutamine dipeptide-supplemented parenteral nutrition improves the clinical outcomes of critically ill patients: A systematic evaluation of randomised controlled trials. Clin Nutr ESPEN 2017; 17: 75-85
  • 360 van Zanten ARH, Elke G. Parenteral glutamine should not be routinely used in adult critically ill patients. Clin Nutr 2017; 36: 1184-1185
  • 361 Avenell A. Glutamine in critical care: current evidence from systematic reviews. Proc Nutr Soc 2006; 65: 236-241
  • 362 Avenell A. Hot topics in parenteral nutrition. Current evidence and ongoing trials on the use of glutamine in critically-ill patients and patients undergoing surgery. Proc Nutr Soc 2009; 68: 261-268
  • 363 Jiang H, Chen W, Hu W. et al. [The impact of glutamine-enhanced enteral nutrition on clinical outcome of patients with critical illness: a systematic review of randomized controlled trials]. Zhonghua Shao Shang Za Zhi 2009; 25: 325-330
  • 364 Novak F, Heyland DK, Avenell A. et al. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 2002; 30: 2022-2029
  • 365 Grau T, Bonet A, Minambres E. et al. The effect of L-alanyl-L-glutamine dipeptide supplemented total parenteral nutrition on infectious morbidity and insulin sensitivity in critically ill patients. Crit Care Med 2011; 39: 1263-1268
  • 366 McRae MP. Therapeutic benefits of glutamine: An umbrella review of meta-analyses. Biomed Rep 2017; 6: 576-584
  • 367 Patel JJ, Miller KR, Rosenthal C. et al. When Is It Appropriate to Use Arginine in Critical Illness. Nutr Clin Pract 2016; 31: 438-444
  • 368 Kieft H, Roos AN, van Drunen JD. et al. Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med 2005; 31: 524-532
  • 369 Kuhls DA, Rathmacher JA, Musngi MD. et al. Beta-hydroxy-beta-methylbutyrate supplementation in critically ill trauma patients. J Trauma 2007; 62: 125-131; discussion 131
  • 370 Luiking YC, Poeze M, Deutz NE. Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond) 2015; 128: 57-67
  • 371 Ligthart-Melis GC, van de Poll MC, Dejong CH. et al. The route of administration (enteral or parenteral) affects the conversion of isotopically labeled L-[2-15N]glutamine into citrulline and arginine in humans. JPEN J Parenter Enteral Nutr 2007; 31: 343-348; discussion 349
  • 372 Ligthart-Melis GC, Deutz NE. Is glutamine still an important precursor of citrulline?. Am J Physiol Endocrinol Metab 2011; 301: E264-266
  • 373 van de Poll MC, Ligthart-Melis GC, Boelens PG. et al. Intestinal and hepatic metabolism of glutamine and citrulline in humans. J Physiol 2007; 581: 819-827
  • 374 Rosenthal MD, Carrott PW, Patel J. et al. Parenteral or Enteral Arginine Supplementation Safety and Efficacy. J Nutr 2016; 146: 2594S-2600S
  • 375 García-de-Lorenzo A, Ortíz-Leyba C, Planas M. et al. Parenteral administration of different amounts of branch-chain amino acids in septic patients: clinical and metabolic aspects. Crit Care Med 1997; 25: 418-424
  • 376 Kuhl DA, Brown RO, Vehe KL. et al. Use of selected visceral protein measurements in the comparison of branched-chain amino acids with standard amino acids in parenteral nutrition support of injured patients. Surgery 1990; 107: 503-510
  • 377 Ott LG, Schmidt JJ, Young AB. et al. Comparison of administration of two standard intravenous amino acid formulas to severely brain-injured patients. Drug Intell Clin Pharm 1988; 22: 763-768
  • 378 Van Way CW, Moore EE, Allo M. et al. Comparison of total parenteral nutrition with 25 per cent and 45 per cent branched chain amino acids in stressed patients. Am Surg 1985; 51: 609-616
  • 379 von Meyenfeldt MF, Soeters PB, Vente JP. et al. Effect of branched chain amino acid enrichment of total parenteral nutrition on nitrogen sparing and clinical outcome of sepsis and trauma: a prospective randomized double blind trial. Br J Surg 1990; 77: 924-929
  • 380 Hoffer LJ, Bistrian BR. Appropriate protein provision in critical illness: a systematic and narrative review. Am J Clin Nutr 2012; 96: 591-600
  • 381 Hartl WH, Alpers DH, Patterson BW. Measurement of intestinal protein synthesis by continuous arterial tracer application: intrinsically difficult problems arising from different protein pools and study techniques. Clin Nutr 2011; 30: 28-32
  • 382 Yoneyama S, Terashima H, Yamaguchi R. et al. The negative impact of insulin therapy for acute hyperglycemia secondary to glucose load on plasma amino acid profiles in a rat model of sepsis. Eur Surg Res 2015; 54: 34-43
  • 383 James HA, O’Neill BT, Nair KS. Insulin Regulation of Proteostasis and Clinical Implications. Cell Metab 2017; 26: 310-323
  • 384 López Hellín J, Baena-Fustegueras JA, Sabín-Urkía P. et al. Nutritional modulation of protein metabolism after gastrointestinal surgery. Eur J Clin Nutr 2008; 62: 254-262
  • 385 Tulikoura I, Huikuri K. Changes in nitrogen metabolism in catabolic patients given three different parenteral nutrition regimens. Acta Chir Scand 1981; 147: 519-524
  • 386 Pearl RH, Clowes GH, Hirsch EF. et al. Prognosis and survival as determined by visceral amino acid clearance in severe trauma. J Trauma 1985; 25: 777-783
  • 387 van Vught LA, Klein Klouwenberg PM, Spitoni C. et al. Incidence, Risk Factors, and Attributable Mortality of Secondary Infections in the Intensive Care Unit After Admission for Sepsis. JAMA 2016; 315: 1469-1479
  • 388 van Barneveld KW, Smeets BJ, Heesakkers FF. et al. Beneficial Effects of Early Enteral Nutrition After Major Rectal Surgery: A Possible Role for Conditionally Essential Amino Acids? Results of a Randomized Clinical Trial. Crit Care Med 2016; 44: e353-361
  • 389 Perinel J, Mariette C, Dousset B. et al. Early Enteral Versus Total Parenteral Nutrition in Patients Undergoing Pancreaticoduodenectomy: A Randomized Multicenter Controlled Trial (Nutri-DPC). Ann Surg 2016; 264: 731-737
  • 390 Agus MS, Wypij D, Hirshberg EL. et al. Tight Glycemic Control in Critically Ill Children. N Engl J Med 2017; 376: 729-741
  • 391 NICE-SUGAR SI, Finfer S, Chittock DR. et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283-1297
  • 392 Porter C, Cotter M, Diaz EC. et al. Amino acid infusion fails to stimulate skeletal muscle protein synthesis up to 1 year after injury in children with severe burns. J Trauma Acute Care Surg 2013; 74: 1480-1485
  • 393 Tuvdendorj D, Chinkes DL, Zhang XJ. et al. Skeletal muscle is anabolically unresponsive to an amino acid infusion in pediatric burn patients 6 months postinjury. Ann Surg 2011; 253: 592-597
  • 394 Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung. Hrsg. Referenzwerte für die Nährstoffzufuhr. 2.. Auflage, 3. aktualisierte Ausgabe. Bonn: DGE Medienservice; 2017
  • 395 Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements. Vitamin and mineral requirements in human nutrition: report of a joint FAO/WHO expert consultation. 2.. ed. Bangkok, Thailand: WHO Publications; 1998
  • 396 Biesalski HK, Bischoff SC, Böhles HJ. et al. Leitlinie Parenterale Ernährung der DGEM. Wasser, Elektrolyte, Vitamine und Spurenelemente. Aktuel Ernahrungsmed 2007; 32: S30-34
  • 397 Food and Drug Administration (FDA). Parenteral Multivitamin Products; Drugs for Human Use; Drug Efficacy Study Implementation; Amendment. Federal Register 2000; 65: 21200-21201
  • 398 Rousseau AF, Losser MR, Ichai C. et al. ESPEN endorsed recommendations: nutritional therapy in major burns. Clin Nutr 2013; 32: 497-502
  • 399 Pierre JF, Heneghan AF, Lawson CM. et al. Pharmaconutrition review: physiological mechanisms. JPEN J Parenter Enteral Nutr 2013; 37: 51S-65S
  • 400 Forceville X, Vitoux D, Gauzit R. et al. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit Care Med 1998; 26: 1536-1544
  • 401 Forceville X, Mostert V, Pierantoni A. et al. Selenoprotein P, rather than glutathione peroxidase, as a potential marker of septic shock and related syndromes. Eur Surg Res 2009; 43: 338-347
  • 402 Angstwurm MW, Engelmann L, Zimmermann T. et al. Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med 2007; 35: 118-126
  • 403 Forceville X, Laviolle B, Annane D. et al. Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care 2007; 11: R73
  • 404 Manzanares W, Biestro A, Torre MH. et al. High-dose selenium reduces ventilator-associated pneumonia and illness severity in critically ill patients with systemic inflammation. Intensive Care Med 2011; 37: 1120-1127
  • 405 Alhazzani W, Jacobi J, Sindi A. et al. The effect of selenium therapy on mortality in patients with sepsis syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med 2013; 41: 1555-1564
  • 406 Huang TS, Shyu YC, Chen HY. et al. Effect of parenteral selenium supplementation in critically ill patients: a systematic review and meta-analysis. PLoS One 2013; 8: e54431
  • 407 Allingstrup M, Afshari A. Selenium supplementation for critically ill adults. Cochrane Database Syst Rev 2015 CD003703
  • 408 Bloos F, Trips E, Nierhaus A. et al. Effect of Sodium Selenite Administration and Procalcitonin-Guided Therapy on Mortality in Patients With Severe Sepsis or Septic Shock: A Randomized Clinical Trial. JAMA Intern Med 2016; 176: 1266-1276
  • 409 Manzanares W, Lemieux M, Elke G. et al. High-dose intravenous selenium does not improve clinical outcomes in the critically ill: a systematic review and meta-analysis. Crit Care 2016; 20: 356
  • 410 Duncan A, Dean P, Simm M. et al. Zinc supplementation in intensive care: results of a UK survey. J Crit Care 2012; 27: 102.e1-6
  • 411 Besecker BY, Exline MC, Hollyfield J. et al. A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission. Am J Clin Nutr 2011; 93: 1356-1364
  • 412 Heyland DK, Jones N, Cvijanovich NZ. et al. Zinc supplementation in critically ill patients: a key pharmaconutrient. JPEN J Parenter Enteral Nutr 2008; 32: 509-519
  • 413 Wanten G, Beunk J, Naber A. et al. Tocopherol isoforms in parenteral lipid emulsions and neutrophil activation. Clin Nutr 2002; 21: 417-422
  • 414 Bertrand Y, Pincemail J, Hanique G. et al. Differences in tocopherol-lipid ratios in ARDS and non-ARDS patients. Intensive Care Med 1989; 15: 87-93
  • 415 Goode HF, Cowley HC, Walker BE. et al. Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 1995; 23: 646-651
  • 416 Bartels M, Biesalski HK, Engelhart K. et al. Pilot study on the effect of parenteral vitamin E on ischemia and reperfusion induced liver injury: a double blind, randomized, placebo-controlled trial. Clin Nutr 2004; 23: 1360-1370
  • 417 Lassnigg A, Punz A, Barker R. et al. Influence of intravenous vitamin E supplementation in cardiac surgery on oxidative stress: a double-blinded, randomized, controlled study. Br J Anaesth 2003; 90: 148-154
  • 418 Oudemans-van Straaten HM, Spoelstra-de Man AM, de Waard MC. Vitamin C revisited. Crit Care 2014; 18: 460
  • 419 Rümelin A, Humbert T, Lühker O. et al. Metabolic clearance of the antioxidant ascorbic acid in surgical patients. J Surg Res 2005; 129: 46-51
  • 420 Rümelin A, Jaehde U, Kerz T. et al. Early postoperative substitution procedure of the antioxidant ascorbic acid. J Nutr Biochem 2005; 16: 104-108
  • 421 Long CL, Maull KI, Krishnan RS. et al. Ascorbic acid dynamics in the seriously ill and injured. J Surg Res 2003; 109: 144-148
  • 422 Fowler AA, Syed AA, Knowlson S. et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med 2014; 12: 32
  • 423 Zabet MH, Mohammadi M, Ramezani M. et al. Effect of high-dose Ascorbic acid on vasopressor’s requirement in septic shock. J Res Pharm Pract 2016; 5: 94-100
  • 424 Kahn SA, Beers RJ, Lentz CW. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J Burn Care Res 2011; 32: 110-117
  • 425 Sadeghpour A, Alizadehasl A, Kyavar M. et al. Impact of vitamin C supplementation on post-cardiac surgery ICU and hospital length of stay. Anesth Pain Med 2015; 5: e25337
  • 426 Hu X, Yuan L, Wang H. et al. Efficacy and safety of vitamin C for atrial fibrillation after cardiac surgery: A meta-analysis with trial sequential analysis of randomized controlled trials. Int J Surg 2017; 37: 58-64
  • 427 Nathens AB, Neff MJ, Jurkovich GJ. et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg 2002; 236: 814-822
  • 428 Giladi AM, Dossett LA, Fleming SB. et al. High-dose antioxidant administration is associated with a reduction in post-injury complications in critically ill trauma patients. Injury 2011; 42: 78-82
  • 429 Collier BR, Giladi A, Dossett LA. et al. Impact of high-dose antioxidants on outcomes in acutely injured patients. JPEN J Parenter Enteral Nutr 2008; 32: 384-388
  • 430 Marik PE, Khangoora V, Rivera R. et al. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest 2017; 151: 1229-1238
  • 431 Ribeiro Nogueira C, Ramalho A, Lameu E. et al. Serum concentrations of vitamin A and oxidative stress in critically ill patients with sepsis. Nutr Hosp 2009; 24: 312-317
  • 432 Matos AC, Souza GG, Moreira V. et al. Effect of vitamin A supplementation on clinical evolution in patients undergoing coronary artery bypass grafting, according to serum levels of zinc. Nutr Hosp 2012; 27: 1981-1986
  • 433 Nair P, Lee P, Reynolds C. et al. Significant perturbation of vitamin D-parathyroid-calcium axis and adverse clinical outcomes in critically ill patients. Intensive Care Med 2013; 39: 267-274
  • 434 Cashman KD, Dowling KG, Škrabáková Z. et al. Vitamin D deficiency in Europe: pandemic. Am J Clin Nutr 2016; 103: 1033-1044
  • 435 Quraishi SA, Bittner EA, Christopher KB. et al. Vitamin D status and community-acquired pneumonia: results from the third National Health and Nutrition Examination Survey. PLoS One 2013; 8: e81120
  • 436 Amrein K, Litonjua AA, Moromizato T. et al. Increases in pre-hospitalization serum 25(OH)D concentrations are associated with improved 30-day mortality after hospital admission: A cohort study. Clin Nutr 2016; 35: 514-521
  • 437 Braun AB, Gibbons FK, Litonjua AA. et al. Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality. Crit Care Med 2012; 40: 63-72
  • 438 Kim HJ, Ji M, Song J. et al. Clinical Utility of Measurement of Vitamin D-Binding Protein and Calculation of Bioavailable Vitamin D in Assessment of Vitamin D Status. Ann Lab Med 2017; 37: 34-38
  • 439 Han JE, Jones JL, Tangpricha V. et al. High Dose Vitamin D Administration in Ventilated Intensive Care Unit Patients: A Pilot Double Blind Randomized Controlled Trial. J Clin Transl Endocrinol 2016; 4: 59-65
  • 440 Ala-Kokko TI, Mutt SJ, Nisula S. et al. Vitamin D deficiency at admission is not associated with 90-day mortality in patients with severe sepsis or septic shock: Observational FINNAKI cohort study. Ann Med 2016; 48: 67-75
  • 441 Amrein K, Schnedl C, Holl A. et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA 2014; 312: 1520-1530
  • 442 Langlois PL, Szwec C, D’Aragon F. et al. Vitamin D supplementation in the critically ill: A systematic review and meta-analysis. Clin Nutr 2018; 37: 1238-1246
  • 443 Weng H, Li JG, Mao Z. et al. Randomised trials of vitamin D3 for critically ill patients in adults: systematic review and meta-analysis with trial sequential analysis. Intensive Care Med 2017; 43: 277-278
  • 444 Putzu A, Belletti A, Cassina T. et al. Meta-analyses on Vitamin D in critically ill patients: What data can tell us. J Crit Care 2017; 42: 335
  • 445 Putzu A, Belletti A, Cassina T. et al. Vitamin D and outcomes in adult critically ill patients. A systematic review and meta-analysis of randomized trials. J Crit Care 2017; 38: 109-114
  • 446 Amrein K, Oudemans-van Straaten HM, Berger MM. Vitamin therapy in critically ill patients: focus on thiamine, vitamin C, and vitamin D. Intensive Care Med 2018; Mar 8; DOI: 10.1007/s00134-018-5107-y. [Epub ahead of print]
  • 447 Jamieson CP, Obeid OA, Powell-Tuck J. The thiamin, riboflavin and pyridoxine status of patients on emergency admission to hospital. Clin Nutr 1999; 18: 87-91
  • 448 Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care 2011; 14: 610-617
  • 449 Donnino MW, Andersen LW, Chase M. et al. Randomized, Double-Blind, Placebo-Controlled Trial of Thiamine as a Metabolic Resuscitator in Septic Shock: A Pilot Study. Crit Care Med 2016; 44: 360-367
  • 450 Flannery AH, Adkins DA, Cook AM. Unpeeling the Evidence for the Banana Bag: Evidence-Based Recommendations for the Management of Alcohol-Associated Vitamin and Electrolyte Deficiencies in the ICU. Crit Care Med 2016; 44: 1545-1552
  • 451 International Society for Burn Injuries. Steering S, Advisory S. ISBI Practice Guidelines for Burn Care. Burns 2016; 42: 953-1021
  • 452 Matsuda T, Kagan RJ, Hanumadass M. et al. The importance of burn wound size in determining the optimal calorie:nitrogen ratio. Surgery 1983; 94: 562-568
  • 453 Alexander JW, MacMillan BG, Stinnett JD. et al. Beneficial effects of aggressive protein feeding in severely burned children. Ann Surg 1980; 192: 505-517
  • 454 Dickerson RN. Hypocaloric feeding of obese patients in the intensive care unit. Curr Opin Clin Nutr Metab Care 2005; 8: 189-196
  • 455 Burge JC, Goon A, Choban PS. et al. Efficacy of hypocaloric total parenteral nutrition in hospitalized obese patients: a prospective, double-blind randomized trial. JPEN J Parenter Enteral Nutr 1994; 18: 203-207
  • 456 Choban PS, Burge JC, Scales D. et al. Hypoenergetic nutrition support in hospitalized obese patients: a simplified method for clinical application. Am J Clin Nutr 1997; 66: 546-550
  • 457 Dickerson RN, Boschert KJ, Kudsk KA. et al. Hypocaloric enteral tube feeding in critically ill obese patients. Nutrition 2002; 18: 241-246
  • 458 Choban P, Dickerson R, Malone A. et al. A.S.P.E.N. Clinical guidelines: nutrition support of hospitalized adult patients with obesity. JPEN J Parenter Enteral Nutr 2013; 37: 714-744
  • 459 Martindale RG, DeLegge M, McClave S. et al. Nutrition delivery for obese ICU patients: delivery issues, lack of guidelines, and missed opportunities. JPEN J Parenter Enteral Nutr 2011; 35: 80S-87S
  • 460 McClave SA, Kushner R, Van Way CW. et al. Nutrition therapy of the severely obese, critically ill patient: summation of conclusions and recommendations. JPEN J Parenter Enteral Nutr 2011; 35: 88S-96S
  • 461 Dickerson RN, Rosato EF, Mullen JL. Net protein anabolism with hypocaloric parenteral nutrition in obese stressed patients. Am J Clin Nutr 1986; 44: 747-755
  • 462 Mogensen KM, Andrew BY, Corona JC. et al. Validation of the Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition Recommendations for Caloric Provision to Critically Ill Obese Patients: A Pilot Study. JPEN J Parenter Enteral Nutr 2016; 40: 713-721
  • 463 Fujioka K, DiBaise JK, Martindale RG. Nutrition and metabolic complications after bariatric surgery and their treatment. JPEN J Parenter Enteral Nutr 2011; 35: 52S-9S
  • 464 Mechanick JI, Youdim A, Jones DB. et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient – 2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring) 2013; 21 (Suppl. 01) S1-27
  • 465 Naidu SS. Novel percutaneous cardiac assist devices: the science of and indications for hemodynamic support. Circulation 2011; 123: 533-543
  • 466 Scurlock C, Raikhelkar J, Mechanick JI. Impact of new technologies on metabolic care in the intensive care unit. Curr Opin Clin Nutr Metab Care 2009; 12: 196-200
  • 467 Jaksic T, Hull MA, Modi BP. et al. A.S.P.E.N. Clinical guidelines: nutrition support of neonates supported with extracorporeal membrane oxygenation. JPEN J Parenter Enteral Nutr 2010; 34: 247-253
  • 468 De Waele E, van Zwam K, Mattens S. et al. Measuring resting energy expenditure during extracorporeal membrane oxygenation: preliminary clinical experience with a proposed theoretical model. Acta Anaesthesiol Scand 2015; 59: 1296-1302
  • 469 Wollersheim T, Frank S, Müller MC. et al. Measuring Energy Expenditure in extracorporeal lung support Patients (MEEP) – Protocol, feasibility and pilot trial. Clin Nutr 2018; 37: 301-307
  • 470 Ferrie S, Herkes R, Forrest P. Nutrition support during extracorporeal membrane oxygenation (ECMO) in adults: a retrospective audit of 86 patients. Intensive Care Med 2013; 39: 1989-1994
  • 471 Scott LK, Boudreaux K, Thaljeh F. et al. Early enteral feedings in adults receiving venovenous extracorporeal membrane oxygenation. JPEN J Parenter Enteral Nutr 2004; 28: 295-300
  • 472 Umezawa Makikado LD, Flordelís Lasierra JL, Pérez-Vela JL. et al. Early enteral nutrition in adults receiving venoarterial extracorporeal membrane oxygenation: an observational case series. JPEN J Parenter Enteral Nutr 2013; 37: 281-284
  • 473 Ridley EJ, Davies AR, Robins EJ. et al. Nutrition therapy in adult patients receiving extracorporeal membrane oxygenation: a prospective, multicentre, observational study. Crit Care Resusc 2015; 17: 183-189
  • 474 Martin C, Gonzalez H, Ruiz S. et al. Acute respiratory distress syndrome following verapamil overdose treated with intravenous lipid emulsion: a rare life-threatening complication. Ann Fr Anesth Reanim 2014; 33: e101-102
  • 475 Buck ML, Wooldridge P, Ksenich RA. Comparison of methods for intravenous infusion of fat emulsion during extracorporeal membrane oxygenation. Pharmacotherapy 2005; 25: 1536-1540
  • 476 Lee HM, Archer JR, Dargan PI. et al. What are the adverse effects associated with the combined use of intravenous lipid emulsion and extracorporeal membrane oxygenation in the poisoned patient. Clin Toxicol (Phila) 2015; 53: 145-150
  • 477 Buck ML, Ksenich RA, Wooldridge P. Effect of infusing fat emulsion into extracorporeal membrane oxygenation circuits. Pharmacotherapy 1997; 17: 1292-1295
  • 478 Rihal CS, Naidu SS, Givertz MM. et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care (Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervention; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention). J Card Fail 2015; 21: 499-518
  • 479 Kilic A, Acker MA, Atluri P. Dealing with surgical left ventricular assist device complications. J Thorac Dis 2015; 7: 2158-2164
  • 480 Aggarwal A, Kumar A, Gregory MP. et al. Nutrition assessment in advanced heart failure patients evaluated for ventricular assist devices or cardiac transplantation. Nutr Clin Pract 2013; 28: 112-119
  • 481 Yost G, Tatooles A, Bhat G. Preoperative Nutritional Assessment with the Prognostic Nutrition Index in Patients Undergoing Left Ventricular Assist Device Implantation. ASAIO J 2018; 64: 52-55
  • 482 Anker SD, Chua TP, Ponikowski P. et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 1997; 96: 526-534
  • 483 Springer J, Springer JI, Anker SD. Muscle wasting and sarcopenia in heart failure and beyond: update 2017. ESC Heart Fail 2017; 4: 492-498
  • 484 Vellas B, Guigoz Y, Garry PJ. et al. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999; 15: 116-122
  • 485 Lomivorotov VV, Efremov SM, Boboshko VA. et al. Evaluation of nutritional screening tools for patients scheduled for cardiac surgery. Nutrition 2013; 29: 436-442
  • 486 Butler J, Howser R, Portner PM. et al. Body mass index and outcomes after left ventricular assist device placement. Ann Thorac Surg 2005; 79: 66-73
  • 487 Lietz K, Long JW, Kfoury AG. et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation 2007; 116: 497-505
  • 488 Musci M, Loforte A, Potapov EV. et al. Body mass index and outcome after ventricular assist device placement. Ann Thorac Surg 2008; 86: 1236-1242
  • 489 Mano A, Fujita K, Uenomachi K. et al. Body mass index is a useful predictor of prognosis after left ventricular assist system implantation. J Heart Lung Transplant 2009; 28: 428-433
  • 490 Kato TS, Kitada S, Yang J. et al. Relation of preoperative serum albumin levels to survival in patients undergoing left ventricular assist device implantation. Am J Cardiol 2013; 112: 1484-1488
  • 491 Weitzel LB, Ambardekar AV, Brieke A. et al. Left ventricular assist device effects on metabolic substrates in the failing heart. PLoS One 2013; 8: e60292
  • 492 Emani S, Brewer RJ, John R. et al. Patients with low compared with high body mass index gain more weight after implantation of a continuous-flow left ventricular assist device. J Heart Lung Transplant 2013; 32: 31-35
  • 493 Yost G, Gregory M, Bhat G. Short-form nutrition assessment in patients with advanced heart failure evaluated for ventricular assist device placement or cardiac transplantation. Nutr Clin Pract 2014; 29: 686-691
  • 494 Yost G, Gregory M, Bhat G. Nutrition Assessment With Indirect Calorimetry in Patients Evaluated for Left Ventricular Assist Device Implantation. Nutr Clin Pract 2015; 30: 690-697
  • 495 el-Amir NG, Gardocki M, Levin HR. et al. Gastrointestinal consequences of left ventricular assist device placement. ASAIO J 1996; 42: 150-153
  • 496 Morgan JA, Go PH, Xuereb L. et al. Outcomes on Continuous Flow Left Ventricular Assist Devices: A Single Institutional 9-Year Experience. Ann Thorac Surg 2016; 102: 1266-1273
  • 497 Wasler A, Springer WE, Radovancevic B. et al. A comparison between intraperitoneal and extraperitoneal left ventricular assist system placement. ASAIO J 1996; 42: M573-576
  • 498 Page S, Cecere R, Valenti D. Percutaneous gastrojejunostomy placement in a heart failure patient with biventricular assist devices. JPEN J Parenter Enteral Nutr 2009; 33: 721-723
  • 499 Slaughter MS, Pappas P, Tatooles A. Percutaneous endoscopic gastrostomy tube in a patient with a left ventricular assist device. ASAIO J 2003; 49: 611-612
  • 500 Scurlock C, Pinney SP, Lin HM. et al. Safety of parenteral nutrition in patients receiving a ventricular assist device. ASAIO J 2014; 60: 376-380
  • 501 Aslam S, Hernandez M, Thornby J. et al. Risk factors and outcomes of fungal ventricular-assist device infections. Clin Infect Dis 2010; 50: 664-671