Planta Med 2019; 85(07): 552-562
DOI: 10.1055/a-0660-0441
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Cryptotanshinone from Salvia miltiorrhiza Roots Reduces Cytokeratin CK1/10 Expression in Keratinocytes by Activation of Peptidyl-prolyl-cis-trans-isomerase FKBP1A

Stefan Esch
1   University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
,
Simone König
2   University of Münster, Interdisciplinary Centre for Clinical Research, Core Unit Proteomics, Münster, Germany
,
Bertan Bopp
3   University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Münster, Germany
,
Joachim Jose
3   University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Münster, Germany
,
Simone Brandt
1   University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
,
Andreas Hensel
1   University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
› Author Affiliations
Further Information

Publication History

received 13 April 2018
revised 02 July 2018

accepted 11 July 2018

Publication Date:
23 July 2018 (online)

Abstract

Cryptotanshinone (CTS) (1 µM) from the roots of Salvia miltiorrhiza exerts a strong influence on the terminal differentiation of human keratinocytes (HaCaT cell line, primary natural human keratinocytes) and downregulates the expression of differentiation-specific cytokeratins CK1 and CK10 on protein and gene level. Other differentiation specific proteins as involucrin, filaggrin, loricrin, and transglutaminase were not affected to a higher extent. CTS (1 µM) did not influence the cell viability and the proliferation of keratinocytes. Using a combination of drug affinity response target stability assay in combination with a proteomic approach and multivariate statistics for target elucidation, peptidyl-prolyl-cis-trans-isomerase FKBP1A (known target of inhibitors such as tacrolimus or rapamycin) was addressed as potential molecular target of CTS. The interaction of CTS with FKBP1A was additionally shown by thermal shift and enzymatic activity assays. Interestingly, CTS served as an activator of FKBP1A, which led to a reduced activity of the TGFβ receptor pathway and therefore to a diminished CK1 and CK10 expression. The combination of the FKBP1A activator CTS with the inhibitor tacrolimus neutralized the effects of both compounds. From these data, a potential dermatological use of CTS and CTS-containing plant extracts (e.g., hydroalcoholic extract from the roots of S. miltiorrhiza) for keratinopathic ichthyosis, a disease characterized by overexpression of CK1 and CK10, is discussed. This study displays an experimental strategy for combining phytochemical aspects on active natural products with systematic identification of molecular targets on gene, protein, and cell level.

Supporting Information

 
  • References

  • 1 Edwards H, Finlayson K, Courtney M, Graves N, Gibb M, Parker C. Health service pathways for patients with chronic leg ulcers: identifying effective pathways for facilitation of evidence based wound care. BMC Health Serv Res 2013; 13: 86
  • 2 Harding KG, Morris HL, Patel GK. Science, medicine and the future: healing chronic wounds. BMJ 2002; 324: 160-163
  • 3 McGuckin M, Waterman R, Brooks J, Cherry G, Porten L, Hurley S, Kerstein MD. Validation of venous leg ulcer guidelines in the United States and United Kingdom. The Am J Surg 2002; 183: 132-137
  • 4 Kisseih E, Lechtenberg M, Petereit F, Sendker J, Zacharski D, Brandt S, Agyare C, Hensel A. Phytochemical characterization and in vitro wound healing activity of leaf extracts from Combretum mucronatum Schum. & Thonn.: oligomeric procyanidins as strong inductors of cellular differentiation. J Ethnopharmacol 2015; 174: 628-636
  • 5 Agyare C, Lechtenberg M, Deters A, Petereit F, Hensel A. Ellagitannins from Phyllanthus muellerianus (Kuntze) Exell.: geraniin and furosin stimulate cellular activity, differentiation and collagen synthesis of human skin keratinocytes and dermal fibroblasts. Phytomedicine 2011; 18: 617-624
  • 6 Zippel J, Deters A, Pappai D, Hensel A. A high molecular arabinogalactan from Ribes nigrum L.: influence on cell physiology of human skin fibroblasts and keratinocytes and internalization into cells via endosomal transport. Carbohydr Res 2009; 344: 1001-1008
  • 7 Zippel J, Wells T, Hensel A. Arabinogalactan protein from Jatropha curcas L. seeds as TGFβ1-mediated inductor of keratinocyte in vitro differentiation and stimulation of GM-CSF, HGF, KGF and in organotypic skin equivalents. Fitoterapia 2010; 81: 772-778
  • 8 Zacharski DM, Brandt S, Esch S, König S, Mormann M, Ulrich-Merzenich G, Hensel A. Xyloglucan from Tropaeolum majus seeds induces cellular differentiation of human keratinocytes by inhibition of EGFR phosphorylation and decreased activity of transcription factor CREB. Biomacromolecules 2015; 16: 2157-2167
  • 9 Deters A, Zippel J, Hellenbrand N, Pappai D, Possemeyer C, Hensel A. Aqueous extracts and polysaccharides from marshmallow roots (Althea officinalis L.): cellular internalisation and stimulation of cell physiology of human epithelial cells in vitro . J Ethnopharmacol 2010; 127: 62-69
  • 10 Poumay Y, Herphelin F, Smits P, de Potter IY, Pittelkow MR. High-cell-density phorbol ester and retinoic acid upregulate involucrin and downregulate suprabasal keratin 10 in autocrine cultures of human epidermal keratinocytes. Mol Cell Biol Res Commun 1999; 2: 138-144
  • 11 Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6: 328-340
  • 12 Steven AC, Steinert PM. Protein composition of cornified cell envelopes of epidermal keratinocytes. J Cell Sci 1994; 107: 693-700
  • 13 Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 2003; 4: 140-156
  • 14 Deters A, Petereit F, Schmidgall J, Hensel A. N-Acetyl-D-glucosamine oligosaccharides induce mucin secretion from colonic tissue and induce differentiation of human keratinocytes. J Pharm Pharmacol 2008; 60: 197-204
  • 15 Zhou L, Zuo Z, Chow MSS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2005; 45: 1345-1359
  • 16 Li F, Xu R, Zeng Q, Li X, Chen J, Wang Y, Fan B, Geng L, Li B. Tanshinone IIA inhibits growth of keratinocytes through cell cycle arrest and apoptosis: underlying treatment mechanism of psoriasis. Evid Based Complement Alternat Med 2012; 2012: 927658
  • 17 Ho JH, Hong C. Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection. J Biomed Sci 2011; 18: 30
  • 18 Zhang Y, Jiang P, Ye M, Kim S, Jiang C, Lü J. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 2012; 13: 13621-13666
  • 19 Ke F, Wang Z, Song X, Ma Q, Hu Y, Jiang L, Zhang Y, Liu Y, Zhang Y, Gong W. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFκB pathways in cholangiocarcinoma cells. Drug Des Devel Ther 2017; 11: 1753-1766
  • 20 Li Y, Shi S, Gao J, Han S, Wu X, Jia Y, Su L, Shi J, Hu D. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: a potential therapy for the reduction of skin scarring. Biomed Pharmacother 2016; 80: 80-86
  • 21 Ye Q, Wang S, Chen J, Rahman K, Xin H, Zhang H. Medicinal plants for the treatment of hypertrophic scars. Evid Based Complement Alternat Med 2015; 2015: 101340
  • 22 Shin D, Kim H, Shin KD, Yoon YJ, Kim S, Han DC, Kwon B. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 2009; 69: 193-202
  • 23 Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, Wohlschlegel JA, Vondriska TM, Pelletier J, Herschman HR, Clardy J, Clarke CF, Huang J. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A 2009; 106: 21984-21989
  • 24 Pai MY, Lomenick B, Hwang H, Schiestl R, McBride W, Loo JA, Huang J. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol Biol 2015; 1263: 287-298
  • 25 Miyoshi S, Yamazaki S, Uchiumi A, Katagata Y. The Hsp90 inhibitor 17-AAG represses calcium-induced cytokeratin 1 and 10 expression in HaCaT keratinocytes. FEBS Open Bio 2012; 2: 47-50
  • 26 Harding MW, Galat A, Uehling DE, Schreiber SL. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 1989; 341: 758-760
  • 27 Siekierka JJ, Wiederrecht G, Greulich H, Boulton D, Hung SH, Cryan J, Hodges PJ, Sigal NH. The cytosolic-binding protein for the immunosuppressant FK-506 is both a ubiquitous and highly conserved peptidyl-prolyl cis-trans isomerase. J Biol Chem 1990; 265: 21011-21015
  • 28 Vivoli M, Renou J, Chevalier A, Norville IH, Diaz S, Juli C, Atkins H, Holzgrabe U, Renard P, Sarkar-Tyson M, Harmer NJ. A miniaturized peptidyl-prolyl isomerase enzyme assay. Anal Biochem 2017; 536: 59-68
  • 29 Chen YG, Liu F, Massague J. Mechanism of TGFbeta receptor inhibition by FKBP12. EMBO J 1997; 16: 3866-3876
  • 30 Han G, Williams CA, Salter K, Garl PJ, Li AG, Wang X. A role for TGFbeta signaling in the pathogenesis of psoriasis. J Invest Dermatol 2010; 130: 371-377
  • 31 Jesse S, Koenig A, Ellenrieder V, Menke A. Lef-1 isoforms regulate different target genes and reduce cellular adhesion. Int J Cancer 2010; 126: 1109-1120
  • 32 Popp T, Steinritz D, Breit A, Deppe J, Egea V, Schmidt A, Gudermann T, Weber C, Ries C. Wnt5a/β-catenin signaling drives calcium-induced differentiation of human primary keratinocytes. J Invest Dermatol 2014; 134: 2183-2191
  • 33 Törmä H. Regulation of keratin expression by retinoids. Dermatoendocrinol 2011; 3: 136-140
  • 34 Ge D, Han L, Huang S, Peng N, Wang P, Jiang Z, Zhao J, Su L, Zhang S, Zhang Y, Kung H, Zhao B, Miao J. Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy 2014; 10: 957-971
  • 35 Hahn JM, McFarland KL, Combs KA, Supp DM. Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. Burns Trauma 2016; 4: 30
  • 36 Arin MJ, Oji V, Emmert S, Hausser I, Traupe H, Krieg T, Grimberg G. Expanding the keratin mutation database: novel and recurrent mutations and genotype-phenotype correlations in 28 patients with epidermolytic ichthyosis. Br J Dermatol 2011; 164: 442-447
  • 37 Yu H, Mrowietz U, Seifert O. Downregulation of SMAD2, 4 and 6 mRNA and TGFbeta receptor I mRNA in lesional and non-lesional psoriatic skin. Acta Derm Venereol 2009; 89: 351-356
  • 38 Porstmann T, Ternynck T, Avrameas S. Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: an enzyme immunoassay for the assessment of the lymphoid cell proliferative response. J Immunol Methods 1985; 82: 169-179
  • 39 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 40 Darzynkiewicz Z, Crissman H, Jacobberger JW. Cytometry of the cell cycle: cycling through history. Cytometry A 2004; 58: 21-32
  • 41 Liang C, Park AY, Guan J. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro . Nat Protoc 2007; 2: 329-333
  • 42 Distler U, Kuharev J, Navarro P, Tenzer S. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc 2016; 11: 795-812
  • 43 Huynh K, Partch CL. Analysis of protein stability and ligand interactions by thermal shift assay. Curr Protoc Protein Sci 2015; 79: 28.9.1-28.9.14