Rofo 2019; 191(03): 199-208
DOI: 10.1055/a-0649-1205
Oncologic Imaging
© Georg Thieme Verlag KG Stuttgart · New York

Short-Term Measurement Repeatability of a Simplified Intravoxel Incoherent Motion (IVIM) Analysis for Routine Clinical Diffusion-Weighted Imaging in Malignant Liver Lesions and Liver Parenchyma at 1.5 T

Kurzzeitige Wiederholbarkeit einer vereinfachten Intravoxel-Incoherent-Motion (IVIM) -Analyse diffusionsgewichteter Bildgebung aus der klinischen Routine für maligne Leberläsionen und Lebergewebe bei 1,5 T
Claus Christian Pieper
Radiology, University-Hospital Bonn, Germany
,
Alois Martin Sprinkart
Radiology, University-Hospital Bonn, Germany
,
Guido Mattias Kukuk
Radiology, University-Hospital Bonn, Germany
,
Petra Mürtz
Radiology, University-Hospital Bonn, Germany
› Author Affiliations
Further Information

Publication History

12 December 2017

23 June 2018

Publication Date:
06 August 2018 (online)

Abstract

Objectives To evaluate measurement repeatability of parameters derived from simplified intravoxel incoherent motion (IVIM) analysis of diffusion-weighted imaging (DWI) using 3 b-values.

Materials and Methods 24 patients (16 male, 8 female, mean age: 67 years) with hepatic malignancy (HCC: 10, metastases: 14) underwent 29 liver MRI examinations at 1.5 T. Respiratory-triggered DWI (b = 0, 50, 800 s/mm2) was acquired twice. Parameter maps of the apparent diffusion coefficient ADC(0,800), estimated diffusion coefficient D' and perfusion fraction f' were calculated. Measurement repeatability for a region of interest (ROI) placed in one lesion and liver parenchyma per lobe was assessed by intra-session variation coefficients (CV).

Results 86 ROIs (43 lesions, 43 parenchymas) were analyzed. Parameters did not significantly differ between measurements. Repeatability was excellent for ADC(0,800) and D' and good for f' in parenchyma (CVs: 7.3 %, 9.8 %, 13.0 %) and lesions (CVs: 7.5 %, 8.5 %, 11.0 %). Differences in CV-values between liver and lesions were not significant. Repeatability was better for the right than for the left lobe by tendency, for parenchyma (CVs: 6.4 % vs 8.4 %, 8.8 % vs 10.9 %, 10.5 % vs 16.0 %) and for lesions (CVs: 6.9 % vs 8.1 %, 7.5 % vs 9.5 %, 9.5 % vs 12.7 %).

Conclusion Measurement repeatability is excellent for ADC(0,800) and D' values and good for f' values using the simplified IVIM approach, both in lesions and liver parenchyma. Repeatability was better for lesions in the right compared to the left liver lobe.

Key points:

  • Repeatability obtained by a simplified IVIM analysis approach is good to excellent.

  • Repeatability is better for the right than for the left liver lobe.

  • The simplified approach may be helpful in diagnosing and monitoring liver malignancies.

Citation Format

  • Pieper CC, Sprinkart AM, Kukuk GM et al. Short-Term Measurement Repeatability of a Simplified Intravoxel Incoherent Motion (IVIM) Analysis for Routine Clinical Diffusion-Weighted Imaging in Malignant Liver Lesions and Liver Parenchyma at 1.5T. Fortschr Röntgenstr 2019; 191: 199 – 208

Zusammenfassung

Zielsetzung Evaluierung der Messwiederholbarkeit von Parametern, die auf einer vereinfachten Intravoxel-Incoherent-Motion (IVIM) -Analyse diffusionsgewichteter Bildgebung (DWI) mit 3b-Werten basieren.

Material und Methoden 24 Patienten (16 Männer, 8 Frauen, mittleres Alter 67 Jahre) mit malignen Lebertumoren (HCC: 10, Metastasen: 14) erhielten 29 Leber-MRTs bei 1,5 T. Eine Atem-getriggerte DWI (b = 0,50, 800 s/mm2) wurde zweimal akquiriert. Parameterkarten des scheinbaren Diffusionskoeffizienten ADC(0,800), des geschätzten Diffusionskoeffizienten D' und der geschätzten Perfusionsfraktion f' wurden berechnet. Die Messwiederholbarkeit der Messwerte für eine Region-of-Interest (ROI) (jeweils einer pro Leberlappen in einer malignen Läsion und in Lebergewebe) wurde mit dem Variationskoeffizienten (CV) untersucht.

Ergebnisse 86 ROIs (43 Läsionen, 43 Parenchym) wurden analysiert. Die gemessenen Parameter unterschieden sich nicht signifikant zwischen den Messungen. Die Messwiederholbarkeit war exzellent für ADC(0,800) und D' und gut für f' in Lebergewebe (CVs: 7,3 %, 9,8 %, 13,0 %) und Läsionen (CVs: 7,5 %, 8,5 %, 11,0 %). Die CV-Werte unterschieden sich nicht signifikant zwischen Lebergewebe und Läsionen. Die Wiederholbarkeit war tendenziell besser im rechten Leberlappen, für Lebergewebe (CVs: 6,4 % vs. 8,4 %, 8,8 % vs. 10,9 %, 10,5 % vs. 16,0 %) und für Läsionen (CVs: 6,9 % vs. 8,1 %, 7,5 % vs. 9,5 %, 9,5 % vs. 12,7 %).

Schlussfolgerung Messungen mit dem vereinfachten IVIM-Modell zeigten eine exzellente Messwiederholbarkeit für die ADC(0,800) und D'-Werte und eine gute Messwiederholbarkeit für die f'-Werte sowohl für Läsionen als auch für Lebergewebe. Die Messwiederholbarkeit war im rechten Leberlappen besser als im linken Leberlappen.

Kernaussagen:

  • Die vereinfachte IVIM-Analyse zeigt eine gute bis exzellente Messwiederholbarkeit der Parameter.

  • Die Messwiederholbarkeit ist für den rechten Leberlappen besser als für den linken Leberlappen.

  • Die vereinfachte IVIM-Analyse kann bei Diagnose und Monitoring maligner Lebertumoren helfen.

 
  • References

  • 1 Thoeny HC, Ross BD. Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 2010; 32: 2-16
  • 2 Chiaradia M, Baranes L, Van Nhieu JT. et al. Intravoxel incoherent motion (IVIM) MR imaging of colorectal liver metastases: are we only looking at tumor necrosis?. J Magn Reson Imaging 2014; 39: 317-325
  • 3 Padhani AR, Koh DM. Diffusion MR imaging for monitoring of treatment response. Magn Reson Imaging Clin N Am 2011; 19: 181-209
  • 4 Padhani AR, Liu G, Koh DM. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102-125
  • 5 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 2007; 188: 1622-1635
  • 6 Le Bihan D, Breton E, Lallemand D. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505
  • 7 Koh DM. Science to practice: can intravoxel incoherent motion diffusion-weighted MR imaging be used to assess tumor response to antivascular drugs?. Radiology 2014; 272: 307-308
  • 8 Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am J Roentgenol 2011; 196: 1351-1361
  • 9 Cohen AD, Schieke MC, Hohenwalter MD. et al. The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn Reson Med 2015; 73: 306-311
  • 10 Parente DB, Paiva FF, Oliveira Neto JA. et al. Intravoxel Incoherent Motion Diffusion Weighted MR Imaging at 3.0 T: Assessment of Steatohepatitis and Fibrosis Compared with Liver Biopsy in Type 2 Diabetic Patients. PLoS ONE 2015; 10: 1-13
  • 11 Lu PX, Huang H, Yuan J. et al. Decreases in Molecular Diffusion, Perfusion Fraction and Perfusion-Related Diffusion in Fibrotic Livers: A Prospective Clinical Intravoxel Incoherent Motion MR Imaging Study. PLOS ONE 2014; 9: 1-12
  • 12 Guiu B, Petit JM, Capitan V. et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 2012; 265: 96-103
  • 13 Luciani A, Vignaud A, Cavet M. et al. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology 2008; 249: 891-899
  • 14 Kakite S, Dyvorne H, Besa C. et al. Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging 2015; 41: 149-156
  • 15 Yoon JH, Lee JM, Yu MH. et al. Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. J Magn Reson Imaging 2014; 39: 276-285
  • 16 Andreou A, Koh DM, Collins DJ. et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013; 23: 428-434
  • 17 Wagner M, Doblas S, Daire JL. et al. Diffusion-weighted MR imaging for the regional characterization of liver tumors. Radiology 2012; 264: 464-472
  • 18 Li YT, Cercueil JP, Yuan J. et al. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg 2017; 7: 59-78
  • 19 Woo S, Lee JM, Yoon JH. et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology 2014; 270: 758-767
  • 20 Lee JT, Liau J, Murphy P. et al. Cross-sectional investigation of correlation between hepatic steatosis and IVIM perfusion on MR imaging. Magn Reson Imaging 2012; 30: 572-578
  • 21 Cho GY, Kim S, Jensen JH. et al. A versatile flow phantom for intravoxel incoherent motion MRI. Magn Reson Med 2012; 67: 1710-1720
  • 22 Pieper C, Meyer C, Sprinkart AM. et al. The value of intravoxel incoherent motion model-based diffusion-weighted imaging for outcome prediction in resin-based radioembolization of breast cancer liver metastases. Onco Targets and Therapy 2016; 9: 4089-4098
  • 23 Pieper CC, Willinek WA, Meyer C. et al. Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging for Prediction of Early Arterial Blood Flow Stasis in Radioembolization of Breast Cancer Liver Metastases. Journal of Vascular and Interventional Radiology 2016; 27: 1320-1328
  • 24 Pieper CC, Sprinkart AM, Meyer C. et al. Evaluation of a Simplified Intravoxel Incoherent Motion (IVIM) Analysis of Diffusion-Weighted Imaging for Prediction of Tumor Size Changes and Imaging Response in Breast Cancer Liver Metastases Undergoing Radioembolization: A Retrospective Single Center Analysis. Medicine 2016; 95: 1-9
  • 25 Penner AH, Sprinkart AM, Kukuk GM. et al. Intravoxel incoherent motion model-based liver lesion characterisation from three b-value diffusion-weighted MRI. Eur Radiol 2013; 23: 2773-2783
  • 26 Lewin M, Fartoux L, Vignaud A. et al. The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol 2011; 21: 281-290
  • 27 McBride GB. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Report 2005; HAM2005-062: 1-10
  • 28 Gurney-Champion OJ, Froeling M, Klaassen R. et al. Minimizing the Acquisition Time for Intravoxel Incoherent Motion Magnetic Resonance Imaging Acquisitions in the Liver and Pancreas. Invest Radiol 2016; 51: 211-220
  • 29 Lee Y, Lee SS, Kim N. et al. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 2015; 274: 405-415
  • 30 Dyvorne H, Jajamovich G, Kakite S. et al. Intravoxel incoherent motion diffusion imaging of the liver: optimal b-value subsampling and impact on parameter precision and reproducibility. Eur J Radiol 2014; 83: 2109-2113
  • 31 Wang M, Li X, Zou J. et al. Evaluation of Hepatic Tumors Using Intravoxel Incoherent Motion Diffusion-Weighted MRI. Medical Science Monitor 2016; 22: 702-709
  • 32 Doblas S, Wagner M, Leitao HS. et al. Determination of Malignancy and Characterization of Hepatic Tumor Type With Diffusion-Weighted Magnetic Resonance Imaging: Comparison of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion–Derived Measurements. Investigative radiology 2013; 48: 722-728
  • 33 Ichikawa S, Motosugi U, Ichikawa T. et al. Intravoxel incoherent motion imaging of focal hepatic lesions. J Magn Reson Imaging 2013; 37: 1371-1376
  • 34 Mürtz P, Sprinkart AM, Reick M. et al. Accurate IVIM model-based liver lesion characterisation can be achieved with only three b-value DWI. Eur Radiol 2018; DOI: 10.1007/s00330-018-5401-7.
  • 35 Regini F, Colagrande S, Mazzoni LN. et al. Assessment of Liver Perfusion by IntraVoxel Incoherent Motion (IVIM) Magnetic Resonance-Diffusion-Weighted Imaging: Correlation With Phase-Contrast Portal Venous Flow Measurements. J Comput Assist Tomogr 2015; 39: 365-372
  • 36 Jajamovich GH, Dyvorne H, Donnerhack C. et al. Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: assessment of reproducibility and postprandial effect at 3.0 T. PLoS One 2014; 9: 1-8
  • 37 Dyvorne HA, Galea N, Nevers T. et al. Diffusion-weighted Imaging of the Liver with Multiple b Values: Effect of Diffusion Gradient Polarity and Breathing Acquisition on Image Quality and Intravoxel Incoherent Motion Parameters--A Pilot Study. Radiology 2013; 266: 920-929
  • 38 Patel J, Sigmund EE, Rusinek H. et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010; 31: 589-600
  • 39 Steudel A, Träber F, Reiser M. Hepatic tumors: relaxometry and quantitative tissue characterization with magnetic resonance imaging. Frontiers Eur Radiol 1993; 9: 45-61