Subscribe to RSS
DOI: 10.1055/a-0642-1830
Regulation des Knochenstoffwechsels durch den Wnt-Signalweg
Regulation of bone metabolism by the Wnt signaling pathwayPublication History
04/15/2018
06/10/2018
Publication Date:
02 October 2018 (online)
Zusammenfassung
Die Entwicklung und Homöostase von multizellulären Organismen hängt von einem komplexen zellulären Zusammenspiel zwischen Proliferation, Migration, Differenzierung, Adhäsion und Zelltod ab. Die Wnt-Signalwege spielen für die Koordination dieser verschiedenen zellulären Antworten eine wichtige Rolle, insbesondere als regulatorischer Weg bei der osteogenen Differenzierung von mesenchymalen Stammzellen. Der Wnt-Signalweg ist ein attraktives therapeutisches Ziel mit dem Potenzial, Stammzellen, die für die Regeneration des Skelettgewebes verantwortlich sind, direkt zu modulieren. Neuere Untersuchungen zeigen, dass Wnt-Liganden in der Lage sind, das Knochenwachstum zu fördern, was nahe legt, dass Wnt-Faktoren zur Stimulation der Knochenheilung bei osteogenen Störungen verwendet werden könnten.
Abstract
The development and homeostasis of multicellular organisms depends on a complex cellular interaction between proliferation, migration, differentiation, adhesion, and cell death. Wnt signaling pathways coordinate these different cellular responses. Wnt signaling plays a role as a regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. The Wnt signaling pathway is an attractive therapeutic target with the potential to directly modulate stem cells responsible for the regeneration of skeletal tissue. Recent studies indicate that Wnt ligands are capable of promoting bone growth, suggesting that Wnt factors could be used to stimulate bone healing in osteogenic disorders.
-
Literatur
- 1 Marsell R, Einhorn TA. The biology of fracture healing. Injury 2011; 42: 551-555 doi:10.1016/j.injury.2011.03.031
- 2 Beier EE. et al. Inhibition of beta-catenin signaling by Pb leads to incomplete fracture healing. J Orthop Res 2014; 31: 1397-1405
- 3 Chen Y, Alman BA. Wnt pathway, an essential role in bone regeneration. J Cell Biochem 2009; 106: 353-362
- 4 Kim JH. et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 2013; 5: 13-31 doi:10.1177/1759720X12466608
- 5 Engbers MJ, Blom JW, Cushman M. et al. The contribution of immobility risk factors to the incidence of venous thrombosis in an older population. J Thromb Haemost 2014; 12: 290-296 doi:10.1111/jth.12480
- 6 Hak DJ. et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 45 Suppl 2014; 2: S3-7 doi:10.1016/j.injury.2014.04.002
- 7 Wuelling M, Vortkamp A. Chondrocyte proliferation and differentiation. Endocr Dev 2011; 21: 1-11 doi:10.1159/000328081
- 8 Franz-Odendaal TA. Induction and patterning of intramembranous bone. Front Biosci (Landmark Ed) 2011; 16: 2734-2746
- 9 Oryan A, Monazzah S, Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed Environ Sci 2015; 28: 57-71 doi:10.3967/bes2015.006
- 10 Ozcivici E. et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 2010; 6: 50-59 doi:10.1038/nrrheum.2009.239
- 11 Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol 2011; 6: 121-145 doi:10.1146/annurev-pathol-011110–130203
- 12 Morgan EF, De Giacomo A, Gerstenfeld LC. Overview of skeletal repair (fracture healing and its assessment). Methods Mol Biol 2014; 1130: 13-31 doi:10.1007/978–1-62703–989–5_2
- 13 Colnot C, Thompson Z, Miclau T. et al. Altered fracture repair in the absence of MMP9. Development 2003; 130: 4123-4133
- 14 Secreto FJ, Hoeppner LH, Westendorf JJ. Wnt signaling during fracture repair. Curr Osteoporos Rep 2009; 7: 64-69
- 15 Wu M, Chen G, Li YP. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4: 16009 doi:10.1038/boneres.2016.9
- 16 Pesce V. et al. Surgical approach to bone healing in osteoporosis. Clin Cases Miner Bone Metab 2009; 6: 131-135
- 17 Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 2013; 5: a008334 doi:10.1101/cshperspect.a008334
- 18 Kloen P, Buijze GA, Ring D. Management of forearm nonunions: current concepts. Strategies Trauma Limb Reconstr 2012; 7: 1-11 doi:10.1007/s11751–011–0125–0
- 19 Hoang-Kim A, Gelsomini L, Luciani D. et al. Fracture healing and drug therapies in osteoporosis. Clin Cases Miner Bone Metab 2009; 6: 136-143
- 20 Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4: 68-75
- 21 Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469-480 doi:10.1016/j.cell.2006.10.018
- 22 Houschyar KS. et al. Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis 2015; 11: 95-104 doi:10.1080/15476278.2015.1086052
- 23 Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 2012; 31: 2670-2684 doi:10.1038/emboj.2012.146
- 24 Houschyar KS. et al. Role of Wnt signaling during inflammation and sepsis: A review of the literature. Int J Artif Organs. 2018; 391398818762357 doi:10.1177/0391398818762357
- 25 Barker N. The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 2008; 468: 5-15 doi:10.1007/978–1-59745–249–6_1
- 26 Chen C. et al. Aberrant activation of Wnt/beta-catenin signaling drives proliferation of bone sarcoma cells. Oncotarget 2015; 6: 17570-17583 doi:10.18632/oncotarget.4100
- 27 Seo E, Jho EH. Axin-independent phosphorylation of APC controls beta-catenin signaling via cytoplasmic retention of beta-catenin. Biochem Biophys Res Commun 2007; 357: 81-86 doi:10.1016/j.bbrc.2007.03.117
- 28 Xue B, Dunker AK, Uversky VN. The roles of intrinsic disorder in orchestrating the Wnt-pathway. J Biomol Struct Dyn 2012; 29: 843-861 doi:10.1080/073911012010525024
- 29 Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol 2014; 171: 1195-1209 doi:10.1111/bph.12364
- 30 MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4 doi:10.1101/cshperspect.a007880
- 31 Behrens J. et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382: 638-642 doi:10.1038/382638a0
- 32 Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier?. J Biol 2005; 4: 2 doi:10.1186/jbiol22
- 33 Adler PN. The genetic control of tissue polarity in Drosophila. Bioessays 1992; 14: 735-741 doi:10.1002/bies.950141103
- 34 Gonzalez-Sancho JM, Brennan KR, Castelo-Soccio LA. et al. Wnt proteins induce dishevelled phosphorylation via an LRP5/6- independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol 2004; 24: 4757-4768 doi:10.1128/MCB.24.11.4757–4768.2004
- 35 van Amerongen R, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. Sci Signal 2008; 1: re9 doi:10.1126/scisignal.135re9
- 36 Semenov MV, Habas R, Macdonald BT. et al. SnapShot: Noncanonical Wnt Signaling Pathways. Cell 2007; 131: 1378 doi:10.1016/j.cell.2007.12.011
- 37 Tsuji T. et al. Involvement of p114-RhoGEF and Lfc in Wnt-3a- and dishevelled-induced RhoA activation and neurite retraction in N1E-115 mouse neuroblastoma cells. Mol Biol Cell 2010; 21: 3590-3600 doi:10.1091/mbc.E10–02–0095
- 38 Kuhl M, Sheldahl LC, Malbon CC. et al. Ca(2 +)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 2000; 275: 12701-12711
- 39 Ishitani T. et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2 +) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 2003; 23: 131-139
- 40 MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9-26 doi:10.1016/j.devcel.2009.06.016
- 41 Day TF, Guo X, Garrett-Beal L. et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8: 739-750 doi:10.1016/j.devcel.2005.03.016
- 42 Hill TP, Spater D, Taketo MM. et al. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005; 8: 727-738 doi:10.1016/j.devcel.2005.02.013
- 43 Glass DA. et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005; 8: 751-764 doi:10.1016/j.devcel.2005.02.017
- 44 Gong Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107: 513-523
- 45 Tranah GJ. et al. Genetic variation in candidate osteoporosis genes, bone mineral density, and fracture risk: the study of osteoporotic fractures. Calcif Tissue Int 2008; 83: 155-166 doi:10.1007/s00223–008–9165-y
- 46 Richards JB. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 2008; 371: 1505-1512 doi:10.1016/S0140–6736(08)60599–1
- 47 Williams BO, Insogna KL. Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res 2009; 24: 171-178 doi:10.1359/jbmr.081235
- 48 van Bezooijen RL, ten Dijke P, Papapoulos SE. et al. SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 2005; 16: 319-327 doi:10.1016/j.cytogfr.2005.02.005
- 49 Balemans W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 2001; 10: 537-543
- 50 Loots GG. et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 2005; 15: 928-935 doi:10.1101/gr.3437105
- 51 Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 2005; 280: 26770-26775 doi:10.1074/jbc.M504308200
- 52 Pinzone JJ. et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009; 113: 517-525 doi:10.1182/blood-2008–03–145169
- 53 MacDonald BT. et al. Bone mass is inversely proportional to Dkk1 levels in mice. Bone 2007; 41: 331-339 doi:10.1016/j.bone.2007.05.009
- 54 Li J. et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 2006; 39: 754-766 doi:10.1016/j.bone.2006.03.017
- 55 Nakamura RE, Hackam AS. Analysis of Dickkopf3 interactions with Wnt signaling receptors. Growth Factors 2010; 28: 232-242 doi:10.3109/08977191003738832
- 56 Kaiser M. et al. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Haematol 2008; 80: 490-494 doi:10.1111/j.1600–0609.2008.01065.x
- 57 Forget MA. et al. The Wnt pathway regulator DKK1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types. Br J Cancer 2007; 96: 646-653 doi:10.1038/sj.bjc.6603579
- 58 Fulciniti M. et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009; 114: 371-379 doi:10.1182/blood-2008–11–191577
- 59 Diarra D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13: 156-163 doi:10.1038/nm1538
- 60 Kazanskaya O. et al. R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell 2004; 7: 525-534 doi:10.1016/j.devcel.2004.07.019
- 61 Johnson ML. LRP5 and bone mass regulation: Where are we now?. Bonekey Rep 2012; 1: 1 doi:10.1038/bonekey.2012.1
- 62 Riddle RC. et al. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PLoS One 2013; 8: e63323 doi:10.1371/journal.pone.0063323
- 63 Huang W, Yang S, Shao J. et al. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 2007; 12: 3068-3092
- 64 Rundle CH. et al. Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone 2006; 38: 521-529 doi:10.1016/j.bone.2005.09.015
- 65 Komatsu DE. et al. Modulation of Wnt signaling influences fracture repair. J Orthop Res 2010; 28: 928-936 doi:10.1002/jor.21078
- 66 Bao Q. et al. An appropriate Wnt/beta-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Sci Rep 2017; 7: 2695 doi:10.1038/s41598–017–02705–0
- 67 Zhou Y, Wang T, Hamilton JL. et al. Wnt/β-catenin Signaling in Osteoarthritis and in Other Forms of Arthritis. Curr Rheumatol Rep 2017; 19: 53
- 68 Dolmans GH. et al. Wnt Signaling and Dupuytren’s Disease. NEJM 2011; 365: 307-317
- 69 Carre AL. et al. β-Catenin–Dependent Wnt Signaling: A Pathway in Acute Cutaneous Wounding. Plast Reconstr Surg 2018; 141: 669-678