neuroreha 2018; 10(03): 119-126
DOI: 10.1055/a-0641-0397
Schwerpunkt
Georg Thieme Verlag KG Stuttgart · New York

Roboterunterstützte Lokomotionstherapie bei Kindern in der Neuroreha

Tabea Aurich-Schuler
,
Hubertus van Hedel
,
Rob Labruyère
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. September 2018 (online)

Zusammenfassung

Die Besonderheit in der Neurorehabilitation bei Kindern ist, dass deren komplexer neurologischer Zustand unter anderem durch den Entwicklungsstatus, die kognitiven Fähigkeiten, die Motivation, das Alter (Pubertätsübergang) und sonstige Verhaltensauffälligkeiten beeinflusst werden kann. Wie die Lokomotionstherapie entsprechend angepasst wird, beschreibt der folgende Beitrag.

 
  • Literatur

  • 1 Arpino C, Vescio MF, De Luca A. et al. Efficacy of intensive versus nonintensive physiotherapy in children with cerebral palsy: A meta-analysis. Int J Rehabil Res 2010; 33: 165-171
  • 2 Aurich-Schuler T, Grob F, Van Hedel H JA. et al. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J Neuroeng Rehabil J of NeuroEngineering and Rehabilitation 2017; 14: 1-14
  • 3 Bayon C, Raya R, Lerma Lara S. et al. Robotic therapies for children with cerebral palsy: A systematic review. Transl Biomedicine 2016; 7
  • 4 Berker AN, Yalçın MS. Cerebral palsy: Orthopedic aspects and rehabilitation. Pediatr Clin North Am 2008; 55: 1209-1225
  • 5 Chad KE, Bailey DA, McKay HA. et al. The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy. J Pediatr 1999; 135: 115-117
  • 6 Chiarello LA, Palisano RJ, Maggs JM. et al. Family priorities for activity and participation of children and youth with cerebral palsy. Phys Ther 2010; 90: 1254-1264
  • 7 Clearfield MW. Learning to walk changes infants’ social interactions. Infant Behav Dev 2011; 34: 15-25
  • 8 Damiano D, Abel M, Romness M. et al. Comparing functional profiles of children with hemiplegic and diplegic cerebral palsy in GMFCS Levels I and II: Are separate classifications needed?. Dev Med Child Neurol 2006; 48: 797-803
  • 9 Damiano DL, Alter KE, Chambers H. New clinical and research trends in lower extremity management for ambulatory children with cerebral palsy. Phys Med Rehabil Clin NA 2009; 20: 469-491
  • 10 Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate?. Neurorehabil Neural Repair 2012; 26: 308-317
  • 11 Fowler EG, Staudt LA, Greenberg MB. et al. Selective Control Assessment of the Lower Extremity (SCALE): Development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol 2009; 51: 607-614
  • 12 Gibson BE, Teachman G, Wright V. et al. Children’s and parents’ beliefs regarding the value of walking: Rehabilitation implications for children with cerebral palsy. Child Care Health Dev 2012; 38: 61-69
  • 13 Gordon AM. To constrain or not to constrain, and other stories of intensive upper extremity training for children with unilateral cerebral palsy. Dev Med Child Neurol 2011; 53: 56-61
  • 14 Holden MK, Ph D. Virtual environments for motor rehabilitation. Review Motor Rehabilitation 2005; 8
  • 15 Labruyère R, Gerber CN, Birrer-Brütsch K. et al. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil 2013; 34: 3906-3915
  • 16 Larkin D, Summers J. Implications of movement difficulties for social interaction, physical activity, play ans sports. In: Dewey D, Tupper D. eds. Developmental Motor Disorders. A Neuropsychological Perspective. New York: The Guilford Press; 2004: 443-460
  • 17 Majnemer A, Shevell M, Law M. et al. Level of motivation in mastering challenging tasks in children with cerebral palsy. Dev Med Child Neurol 2010; 52: 1120-1126
  • 18 O’Shea TM. Diagnosis, treatment, and prevention of cerebral palsy. Clin Obstet Gynecol 2008; 51: 816-828
  • 19 Palisano R, Rosenbaum P, Walter S. et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39: 214-223
  • 20 Phelan SK, Gibson BE, Wright FV. What is it like to walk with the help of a robot? Children’s perspectives on robotic gait training technology. Disabil Rehabil Informa UK Ltd 2015; 8288: 1-10
  • 21 Pountney T, Mandy A, Green E. et al. Management of hip dislocation with postural management. Child Care Health Dev 2002; 28: 179-185
  • 22 Salem Y, Godwin EM. Effects of task-oriented training on mobility function in children with cerebral palsy. NeuroRehabilitation 2009; 24: 307-313
  • 23 Schuler T, Brütsch K, Müller R. et al. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation 2011; 28: 401-411
  • 24 van Hedel HJA, Lieber J, Ricklin S, Meyer-Heim AD. Die praktische Anwendung von Exergames und virtueller Realität in der pädiatrischen Rehabilitation. neuroreha 2017; 9: 35-40
  • 25 World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. Clin Rev Educ. 2013