Drug Res (Stuttg) 2019; 69(07): 374-373
DOI: 10.1055/a-0640-2557
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Anti-Herpes Simplex Virus Type 1 Activity of Specially Selected Groups of Tannins

Neli Vilhelmova-Ilieva
1   Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
Rémi Jacquet
2   Univ. Bordeaux, ISM (CNRS-UMR 5255), Cedex, France
Denis Deffieux
2   Univ. Bordeaux, ISM (CNRS-UMR 5255), Cedex, France
Laurent Pouységu
2   Univ. Bordeaux, ISM (CNRS-UMR 5255), Cedex, France
Tahiri Sylla
2   Univ. Bordeaux, ISM (CNRS-UMR 5255), Cedex, France
Stefan Chassaing
2   Univ. Bordeaux, ISM (CNRS-UMR 5255), Cedex, France
Ivanka Nikolova
1   Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
Stéphane Quideau
2   Univ. Bordeaux, ISM (CNRS-UMR 5255), Cedex, France
Angel S. Galabov
1   Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
› Author Affiliations
Further Information

Publication History

received 23 March 2018

accepted 01 June 2018

Publication Date:
22 August 2018 (online)


Anti-herpes simplex virus (HSV-1) activity of 9 ellagitannins, including 6 natural compounds (castalin, vescalin, acutissimin A, epiacutissimins A and B, mongolicain) and 3 vescalagin synthetic derivatives (VgSBuSH, VgSOctSH, VgOMe), and 13 gallotannin-type compounds [Gal-01A, Gal-01B, Gal-02A, Gal-02B, Gal-03M, Gal-04A, Gal-04B, Gal-05M, Gal-07, Gal-08, Gal-09, Gal-11M (tannic acid), as well as Gal-12 (gallic acid), Gal-13 and Gal-14 (ellagic acid)] were examined in MDBK monolayer cell culture. Their antiviral activity was determined by the cytopathic effect (CPE) inhibition test and their cytotoxicity was evaluated through the neutral red uptake assay. In general, the series of ellagitannins showed a significantly stronger activity against HSV-1 replication than that of the gallotannins. Six of the tested ellagitannins manifested a well-pronounced activity: epiacutissimin B (selectivity index, SI>60.6), epiacutissimin A (SI>55.5), acutissimin A (SI>34.8), mongolicain (SI>32.5), VgSBuSH (SI>24.6) and VgOMe (SI>22.0). Four gallotannin-type compounds inhibited the replication of HSV-1 at a lower but still significant extent: Gal-04B (SI>35.7), Gal-04A (SI>28.5), Gal-11M (tannic acid) (SI>25) and Gal-05M (SI=15.6).

  • References

  • 1 Riley LE. Herpes simplex virus. Semin Perinatol 1998; 22: 284-292
  • 2 Elion GB, Furman PA, Fyfe JA. et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc Natl Acad Sci USA 1977; 74: 7516-7520
  • 3 Beauchamp LM, Orr GF, de Miranda P. et al. Amino acid ester prodrugs of acyclovir. Antiviral Chem Chemother 1992; 3: 157-164
  • 4 Leung DT, Sacks SL. Current recommendations for the treatment of genital herpes. Drugs 2000; 60: 132952
  • 5 Bacon TH, Boon RJ, Schultz M. et al. Surveillance for antiviral-agent-resistant herpes simplex virus in the general population with recurrent herpes labialis. Antimicrob Agents Chemother 2002; 46: 3042-3044
  • 6 Abraham AM, Kavitha S, Joseph P. et al. Aciclovir resistance among indian strains of herpes simplex virus as determined using a dye uptake assay. Indian J Med Microbiol 2007; 25: 260-262
  • 7 Stránská R, Schuurman R, Nienhuis E. et al. Survey of acyclovir-resistant herpes simplex virus in the Netherlands: Prevalence and characterization. J Clin Virol 2005; 32: 7-18
  • 8 Ziyaeyan M, Alborzi A, Japoni A. et al. Frequency of acyclovir-resistant herpes simplex viruses isolated from the general immunocompetent population and patients with acquired immunodeficiency syndrome. Intern J Dermatol 2007; 46: 1263-1266
  • 9 Cecílio AB, deC Oliveira P, Caldas S. et al. Antiviral activity of Myracrodruon urundeuva against rotavirus. Brazilian J Pharmacogn 2016; 26: 197-202
  • 10 Jassin SAA, Naji MA. Novel antiviral agents: A medicinal plant perspective. J Appl Microbiol 2003; 95: 412-427
  • 11 Suzutani T, Ogasawara M, Yoshida I. et al. Anti-herpesvirus activity of an extract of Ribes nigrum L. Phytother Res 2003; 17: 609-613
  • 12 Schnitzler P, Koch C, Rsichling J. Susceptibility of drug-resistant clinical herpes simplex virus type 1 strain to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrob Agents Chemother 2007; 51: 1859-1862
  • 13 Chattopadhyay D, Das S, Chakrabory S. et al. Ethnomedicines for the development of anti-herpesvirus agents. Ethnomedicine: A Source of Complementary Therapeutics 2010; 117-147 info:pmid/9624546
  • 14 Bag P, Chattopadhyay D, Mukherjee H. et al. Anti-herpes virus activities of bioactive hcaction and isolated pure constituent of Mallotus peltatus: An ethnomedicine from Andaman Islands. Virology J 2012; 9: 98
  • 15 Davood AA, Javad ZM, Alimohammad A. et al. Evaluation effect of hydroalcoholic extract of Eucalyptus globules and Artemisia draconculus compare with acyclovir against herpes simplex virus type 1. Med Plant Res 2012; 2: 6-10
  • 16 Soares AR, Robaina MCS, Mendes GS. et al. Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus. Rev Bras Farmacogn 2012; 22: 714-723
  • 17 Gupta PC. Boilogical and Pharmacological properties of Terminala chebula Retz. (Haritaki)-an overview. International Journal of Pharmacy and Pharmaceutical Sciences 2012; ISSN-0975-1491 4: Suppl 3, 2012
  • 18 Tan WC, Jaganath IB, Manikam R. et al. Evaluation of antiviral activities of four local Malaysian Phyllanthus species against herpes simplex viruses and possible antiviral target. Int J Med Sci 2013; 10: 1817-1829
  • 19 Haslam E. Natural Polyphenols (Vegetable Tannins) as Drugs:  Possible Modes of Action. J Nat Prod 1996; 59: 205-215
  • 20 Ascacio-Valdés J, Buenrostro-Figueroa JJ, Aguilera-Carbo A. et al. Ellagitannins: Biosynthesis, biodegradation and biological properties. J Med Plant Res 2011; 5: 4696-4703
  • 21 Quideau S, Deffieux D, Douat-Casassus C. et al. Plant polyphenols – chemical properties, biological activities, and synthesis. Angew Chem Int Ed 2011; 50: 586-621
  • 22 Buzzini P, Arapitsas P, Goretti M. et al. Antimicrobial and Antiviral Activity of Hydrolysable Tannins. Med Chem 2016; 6: 18 Issues.,A.B.
  • 23 Abdel-Mageed WM, Bayoumi SA, Chen C. et al. Benzophenone C-glucosides and gallotannins from mango tree stem bark with broad-spectrum anti-viral activity. Bioorg Med Chem 2014; 22: 2236-2243
  • 24 deC Oliveira P, Caldas S, Campana PRV. et al. Antiviral activity of Myracrodruon urundeuva against rotavirus. Brazilian J of Pharmacognosy 2016; 26: 197-202
  • 25 Bedoya LM, Abadb MJ, Sánchez-Palominoa S. et al. Ellagitannins from Tuberaria lignosa as entry inhibitors of HIV. Phitomedicine 2010; 17: 69-74
  • 26 Saha RK, Takahashia T, Kurebayashia Y. et al. Antivir Res 2010; 88: 10-18
  • 27 Vilhelmova N, Jacquet R, Quideau S. et al. Three-dimensional analysis of combination effect of ellagitannins and acyclovir on herpes simplex virus types 1 and 2. Antivir Res 2011; 89: 174-181
  • 28 Vilhelmova-Ilieva N, Jacquet R, Quideau S. et al. Ellagitannins as synergists of ACV on the replication of ACV-resistant strains of HSV 1 and 2. Antivir Res 2014; 110: 104-114
  • 29 Lin LT, Chen TY, Chung CY. et al. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol 2011; 85: 4386-4398
  • 30 Lin LT, Chen TY, Lin SC. et al. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. Microbiology 2013; 13: 187 10.1186/1471-2180-13-187
  • 31 Howell B, D'Souza DH. The pomegranate: Effects on bacteria and viruses that influence human health. Evidence-Based Complementary and Alternative Medicine 2013; 2013: Article ID 606212
  • 32 Marín L, Miguélez EM, Villar CJ. et al. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. Biomed Res Int 2015; 905215 10.1155/2015/905215.Epub 2015 Feb 23
  • 33 Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938; 27: 493-497
  • 34 Quideau S, Jourdes M, Saucier C. et al. DNA topoisomerase inhibitor Acutissimin A and other flavano-ellagitannins in red wine. Angew Chem Int Ed 2003; 42: 6012-6014
  • 35 Quideau S, Jourdes M, Lefeuvre D. et al. The chemistry of wine polyphenolic C-glycosidic ellagitannins targeting human topoisomerase II. Chem Eur J 2005; 11: 6503-6513
  • 36 Douat-Casassus C, Chassaing S, Di Primo C. et al. Specific or non specific protein-polyphenol interactions? Discrimination in real time by surface plasmon resonance. Chem BioChem 2009; 10: 2321-2324
  • 37 Petit E, Lefeuvre D, Jacquet R. et al. Remarkable biomimetic chemoselective aerobic oxidation of oak found-in-wine flavano-ellagitannins. Angew Chem Int Ed 2013; 52: 11530-11533
  • 38 Douat C, Berni E, Jacquet R. et al. Protecting-group-free solid-phase anchoring of polyphenolic C-glucosidic ellagitannins and synthesis of 1-alkylamino-vescalagin derivatives. Eur J Org Chem 2014; 23: 4963-4972
  • 39 Sylla T, Pouységu L, Da Costa G. et al. Gallotannins and tannic acid: First chemical syntheses and in vitro inhibitory activity on Alzheimer’s amyloid beta-peptide aggregation. Angew Chem Int Ed 2015; 54: 8217-8221
  • 40 Borenfreund E, Puerner JA. Toxicity determination in vitro by morphological alterations and neutral red absorption. Toxicol Lett 1985; 24: 119-124
  • 41 Vilhelmova-Ilieva N, Quideau S, Jacquet R. et al. Castalagin: Some aspects of the mode of anti-herpes viral activity. Annals of Antivirals and Antiretrovirals 2018; DOI: doi.org/10.17352/aaa.