Deutsche Zeitschrift für Onkologie 2018; 50(04): 158-162
DOI: 10.1055/a-0635-2899
© Georg Thieme Verlag KG Stuttgart · New York

Ernährung und Bewegung: Die Bedeutung der Lebensführung für Krebs

Diet and Exercise: The Importance of Living for Cancer
Ulrich R. Kleeberg
1   Hämatologisch Onkologische Praxis Altona, Hamburg,Zentrum Ambulante Onkologie im Struenseehaus
› Author Affiliations
Further Information

Publication History

Publication Date:
07 January 2019 (online)


Die Lebensumstände (exogene Faktoren), Konstitution und Alter sind entscheidend für die Inzidenz und Progredienz maligner Erkrankungen. Sozio-ökonomische Faktoren beeinflussen die Lebensführung maßgeblich, Übergewicht und Trägheit fördern malignes Wachstum. Wachstumsfaktoren (WF) exokrin (Wirt) & autokrin (Tumor) promovieren Krebs, Fettgewebe und Muskulatur sind aktive endokrine Organe: Weißes Fettgewebe (WAT) ist Hauptproduzent tumor-stimulierender, inflammatorischer WF. Die Bildung dieser WF wird durch Bewegung gemindert, wodurch Krebswachstum gehemmt wird.

Körperliche Aktivität und Reduktion von Übergewicht wirken antientzündlich. Gewichtsabnahme bei Übergewicht mindert Krebsinzidenz und -progredienz. Bewegung und Ernährung beeinflussen die Prognose signifikant. Gesundheitspolitik hat die Verpflichtung zu konzertierten präventiven Initiativen. Lebensführung ist die zentrale Aufgabe tertiärer Prävention für Nachsorge, gemäß dem modernen Konzept zu Survivorship. Entscheidend sind nachhaltige Anleitungen zu täglicher Bewegung von wöchentlich mindestens 3 bis 5 Stunden, entsprechend 9 metabolisch äquivalenten Aufgaben (MET) und einer obst- und gemüsereichen sowie fett- und fleischarmen Ernährung.


The way of life, and living conditions as exogenous factors, as well as the physical condition, and age are critical for the incidence and progression of cancer. Also, socioeconomic factors affect the way of life considerably, overweight and physical inertia promote neoplastic growth. Growth factors (GF), exocrine produced by the host, and autocrine by the tumor itself, both promote cancer. White adipose tissue (WAT) and the muscular system are active glandular structures: WAT is the main producer of tumor-stimulating, inflammatory GF. Physical movement to the contrary diminishes these pro-neoplastic GF, thereby inhibiting tumor growth.

Physical activity and the reduction of overweight are effective in neutralizing inflammatory processes. Weight loss in overweight people decreases cancer incidence and progression, physical activity and diet are critical for the prognoses to a significant degree. Health policy is obligated to concerted initiatives in prevention. To improve the way of life is the central task for tertiary prevention according to the modern concept of survivorship. Crucial are the enduring guidance in daily physical activity, three to five hours at least, equivalent to 9 metabolic tasks (MET), and a well-balanced diet rich in fruit and vegetables, with low meat and fat content.

  • Literatur

  • 1 Pitt JM, Marabelle A, Eggermont A. et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol 2016; 27: 1482-1492
  • 2 Jones LW. Precision oncology framework for investigation of exercise as treatment for cancer. J Clin Oncol 2015; 33: 4134-4137
  • 3 Völzke H, Itterman T, Schmidt CO. et al. Ostdeutsche leben heute gesünder. Dtsch Ärztebl 2015; 112: 185-192
  • 4 Renehan AG, Tyson M, Egger M. et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371: 569-578
  • 5 Lauby-Secretan B, Scoccianti C, Loomis D. et al. Body fatness and cancer – viewpoint of the IARC Working Group. N Engl J Med 2016; 375: 794-798
  • 6 Calle EE, Rodriguez E, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348: 1625-1638
  • 7 Hung RJ, Ulrich CM, Gode EL. et al. Cross cancer genomic investigation of inflammation pathway for five common cancers: lung, ovary, prostate, breast, and colorectal cancer. J Natl Cancer Inst 2015; 107: 1-10
  • 8 Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol 2016; 34: 4270-4276
  • 9 Hopkins BD, Goncalves MD, Cantley LC. Obesity and cancer mechanisms: cancer metabolism. J Clin Oncol 2016; 34: 4277-4283
  • 10 Lohmann AE, Goodwin PJ, Chlebowski RT. et al. Association of obesity-related metabolic disruptions with cancer risk and outcome. J Clin Oncol 2016; 34: 4249-4255
  • 11 Onstad MA, Schmandt RE, Lu KH. Adressing the role of obesity in endometrial cancer risk, prevention, and treatment. J Clin Oncol 2016; 34: 4225-4230
  • 12 Laird BJ, Fallon M, Hjermstad MJ. et al. Quality of life in patients with advanced cancer: differential association with performance status and systemic inflammatory response. J Clin Oncol 2016; 34: 2769-2775
  • 13 Claussnitzer M, Dankel SN, Kim KH. et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015; 373: 895-907
  • 14 Sinha G. Homing in on the fat and cancer connection. JNCI 2012; 104: 966-968
  • 15 Pedersen L, Idorn M, Olofsson GH. et al. Voluntary running suppresses tumor growth through epinephrine- and Il6 – dependent NK cell mobilization and redistribution. Cell Metab 2016; 23: 554-562
  • 16 Garatachea N, Santos-Lozano A, Sanchis-Gomar F. et al. Elite athletes live longer than the general population: A metaanalysis. Mayo Clin Proc 2014; 89: 1195-1200
  • 17 Otto S. Präventive körperliche Aktivität. Geburtshilfe Frauenheilkd 2016; 76: 23-25
  • 18 Vogelstein B, Kinzler KW. The path to cancer: Three strikes and you are out. N Engl J Med 2015; 373: 1895-1896
  • 19 Pedersen BK. A muscular twist on the fate of fat. N Engl J Med 2012; 366: 1544-1546
  • 20 Hojman P, Dethlefsen C, Brandt C. et al. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab 2011; 301: E504-E510
  • 21 Lucia A, Ramírez M. Muscling in on cancer. N Engl J Med 2016; 375: 892-894
  • 22 Basaria S, Bhasin S. Targeting the skeletal muscle-metabolism axis in prostate-cancer therapy. N Engl J Med 2012; 367: 965-967
  • 23 Sanchis-Gomar F. The skeletal muscle-metabolism axis in prostate-cancer therapy. N Engl J Med 2012; 367: 2257-2258
  • 24 Khan S, Shukla S, Sinha S, Meeran SM. Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev 2013; 24: 503-513
  • 25 van Gemert WA, May AM, Schuit AJ et al. Effect of weight loss with or without exercise on inflammatory markers and adipokines in postmenopausal women: the SHAPE-2 Trial. A randomized controlled trial. Cancer Epidemiol Biomarkers Prev 2016 pii: cebp.1065.2015
  • 26 De Simone V, Franzè E, Ronchetti G. et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015; 34: 3493-3503
  • 27 Neilson HK, Friedenreich CM, Brockton NT, Millikan RC. Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomarkers Prev 2009; 18: 11-27
  • 28 Thompson HJ, Sedlacek SM, Wolfe P. et al. Impact of weight loss on plasma leptin and adiponectin in overweight-to-obese post menopausal breast cancer survivors. Nutrients 2015; 7: 5156-5176
  • 29 Gebhardt C, Riehl A, Durchdewald M. et al. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 2008; 205: 275-285
  • 30 Dougan M, Dranoff G. Inciting inflammation: the RAGE about tumor promotion. J Exp Med 2008; 205: 267-270
  • 31 Chlebowski RT. Obesity and breast cancer outcome. J Clin Oncol 2011; 29: 126-127
  • 32 Chlebowski RT, Pettinger M, Stefanick ML. et al. Insulin, physical activity, and caloric intake in postmenopausal women: breast cancer implications. J Clin Oncol 2004; 22: 4507-4513
  • 33 Meyerhardt JA, Sato K, Niedzwiecki D. et al. Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: Findings from CALGB 89803. J Natl Cancer Inst 2012; 104: 1702-1711
  • 34 Llanos AA, Krok JL, Peng J. et al. Effects of a walking intervention using mobile technology and interactive voice response on serum adipokines among postmenopausal women at increased breast cancer risk. Horm Cancer 2014; 5: 98-103
  • 35 Abbenhardt C, McTiernan A, Alfano CM. et al. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels. J Intern Med 2013; 274: 163-175
  • 36 Ligibel J. Life style factors in cancer survivorship. J Clin Oncol 2012; 30: 3697-3704
  • 37 Shlomai G, Neel B, LeRoith D, Gallagher EJ. Type 2 diabetes mellitus and cancer: the role of pharmacotherapy. J Clin Oncol 2016; 34: 4261-4269
  • 38 Keum N, Greenwood DC, Lee DH. et al. Adult weight gain and adiposity-related cancers: A dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst 2015; 107: djv088
  • 39 Boffetta P, Couto E, Wichmann J. et al. Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 2010; 102: 529-537
  • 40 Pierce JP, Stefanick ML, Flatt SW. et al. Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity. J Clin Oncol 2007; 25: 2345-2351
  • 41 Campbell KL, Foster-Schubert KE, Alfano CM. et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J Clin Oncol 2012; 30: 2314-2326