Planta Med 2018; 84(12/13): 834-838
DOI: 10.1055/a-0631-3876
Perspectives
Georg Thieme Verlag KG Stuttgart · New York

Ethnobotany and Medicinal Plant Biotechnology: From Tradition to Modern Aspects of Drug Development[*]

Oliver Kayser
TU Dortmund University, Biochemical and Chemical Engineering, Technical Biochemistry, Dortmund, Germany
› Author Affiliations
Further Information

Publication History

received 28 February 2018
revised 09 May 2018

accepted 10 May 2018

Publication Date:
24 May 2018 (online)

Abstract

Secondary natural products from plants are important drug leads for the development of new drug candidates for rational clinical therapy and exhibit a variety of biological activities in experimental pharmacology and serve as structural template in medicinal chemistry. The exploration of plants and discovery of natural compounds based on ethnopharmacology in combination with high sophisticated analytics is still today an important drug discovery to characterize and validate potential leads. Due to structural complexity, low abundance in biological material, and high costs in chemical synthesis, alternative ways in production like plant cell cultures, heterologous biosynthesis, and synthetic biotechnology are applied. The basis for any biotechnological process is deep knowledge in genetic regulation of pathways and protein expression with regard to todays “omics” technologies. The high number genetic techniques allowed the implementation of combinatorial biosynthesis and wide genome sequencing. Consequently, genetics allowed functional expression of biosynthetic cascades from plants and to reconstitute low-performing pathways in more productive heterologous microorganisms. Thus, de novo biosynthesis in heterologous hosts requires fundamental understanding of pathway reconstruction and multitude of genes in a foreign organism. Here, actual concepts and strategies are discussed for pathway reconstruction and genome sequencing techniques cloning tools to bridge the gap between ethnopharmaceutical drug discovery to industrial biotechnology.

* Dedicated to Professor Dr. Robert Verpoorte in recognition of his outstanding contribution to natural products research.


 
  • References

  • 1 Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006; 27: 1-93
  • 2 Heinrich M, Heneka B, Rimpler H, Ankli A, Sticher O, Kostiza T. Spasmolytic and antidiarrhoeal properties of the Yucatec Mayan medicinal plant Casimiroa tetrameria . J Pharm Pharmacol 2005; 57: 1081-1085
  • 3 World Health Organization (WHO). WHO Traditional Medicine Strategy: 2014 – 2023. Geneva, Switzerland: WHO Press; 2013
  • 4 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
  • 5 Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830: 3670-3695
  • 6 Harvey AL. Natural products in drug discovery. Drug Discov Today 2008; 13: 894-901
  • 7 Shen B. A new golden age of natural products drug discovery. Cell 2015; 163: 1297-1300
  • 8 Li JWH, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier?. Science 2009; 325: 161-165
  • 9 Clardy J, Fischbach MA, Walsh CT. New antibiotics from bacterial natural products. Nat Biotechnol 2006; 24: 1541-1550
  • 10 Fedoroff NV. Prehistoric GM corn. Science 2003; 302: 1158-1159
  • 11 Acquaah G. Principles of Plant Genetics and Breeding. Malden, MA: Blackwell Publishing; 2007: 3-15
  • 12 Mendel G. Versuche über Pflanzen-Hybriden. Sch Publ 1866; 1865: 3-47
  • 13 Heinrich M. Ethnopharmacy and natural product research – multidisciplinary opportunities for research in the metabolomic age. Phytochem Lett 2008; 1: 1-5
  • 14 Nielsen J, Keasling JD. Engineering cellular metabolism. Cell 2016; 164: 1185-1197
  • 15 Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae . Nat Chem Biol 2008; 4: 564-573
  • 16 Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J. De novo biosynthesis of Vanillin in fission yeast (Schizosaccharomyces pombe) and bakerʼs yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 2009; 75: 2765-2774
  • 17 Wolfson W. Evolva breeds small molecule drugs au naturel. Chem Biol 2009; 16: 577-578
  • 18 Degenhardt F, Stehle F, Kayser O. The Biosynthesis of Cannabinoids. In: Preedy VR. ed. Handbook of Cannabis and related Pathologies. Cambridge, MA: Academic Press; 2017: 13-23
  • 19 Matasci N, Hung LH, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayyampalayam S, Barker M, Burleigh JG, Gitzendanner MA, Wafula E, Der JP, dePamphilis CW, Roure B, Philippe H, Ruhfel BR, Miles NW, Graham SW, Mathews S, Surek B, Melkonian M, Soltis DE, Soltis PS, Rothfels C, Pokorny L, Shaw JA, DeGironimo L, Stevenson DW, Villarreal JC, Chen T, Kutchan TM, Rolf M, Baucom RS, Deyholos MK, Samudrala R, Tian Z, Wu X, Sun X, Zhang Y, Wang J, Leebens-Mack J, Wong GKS. Data access for the 1, 000 Plants (1KP) project. Gigascience 2014; 3: 17
  • 20 Chen S, Xiang L, Guo X, Li Q. An introduction to the medicinal plant genome project. Front Med 2011; 5: 178-184
  • 21 Ulrich-Merzenich G, Panek D, Zeitler H, Wagner H, Vetter H. New perspectives for synergy research with the ‘OMIC’-technologies. Phytomedicine 2009; 16: 495-508
  • 22 Verpoorte R, Choi YH, Kim HK. Metabolomics: will it stay?. Phytochem Anal 2010; 21: 2-3
  • 23 Verpoorte R, Choi YH, Kim HK. Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol 2005; 100: 53-56
  • 24 Li JJ. History of Drug Discovery. In: Li JJ, Corey EJ. eds. Drug Discovery: Practices, Processes, and Perspectives. Hoboken, NJ: John Wiley & Sons; 2013: 1-42
  • 25 Ullrich SF, Hagels H, Kayser O. Scopolamine: a journey from the field to clinics. Phytochem Rev 2017; 16: 333-353 doi:10.1007/s11101-016-9477-x
  • 26 Kreis W, Baron D, Stoll G. Biotechnologie der Arzneistoffe. Stuttgart, Germany: Deutscher Apotheker Verlag; 2001
  • 27 Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhövel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P. Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour Charact Util 2005; 3: 90-100
  • 28 Tabata M, Fujita Y. Production of Shikonin in Plant Cell Cultures. In: Zaitlin M. ed. Biotechnology in Plant Science. Cambridge, MA: Academic Press; 1985: 207-218
  • 29 Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJJ. Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 2012; 30: 127-131
  • 30 Howat S, Park B, Oh IS, Jin YW, Lee EK, Loake GJ. Paclitaxel: biosynthesis, production and future prospects. N Biotechnol 2014; 31: 242-245
  • 31 Renneberg R. Biotech history: Yew trees, paclitaxel synthesis and fungi. Biotechnol J 2007; 2: 1207-1209
  • 32 Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Angeles Pedreño M, Palazon J. A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 2014; 32: 1157-1167
  • 33 Muñoz-Torrero D, Cortés A, Mariño EL, Cusidó RM, Vidal H, Gallego A, Abdoli M, Palazón J. 6. Biotechnological production of taxanes: a molecular approach. Transw Res Netw 2013; 37661: 91-107
  • 34 Onrubia M, Cusidó RM, Ramirez K, Hernández-Vázquez L, Moyano E, Bonfill M, Palazon J. Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem 2013; 20: 880-891
  • 35 Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahli M, Naghdibadi H, Dadpour MR, Omidi Y. Improved taxol production by combination of inducing factors in suspension cell culture of Taxus baccata . Cell Biol Int 2006; 30: 262-269
  • 36 Asghari G, Mostajeran A, Sadeghi H, Nakhai A. Effect of salicylic acid and silver nitrate on taxol production in Taxus baccata . J Med Plants 2012; 11: 74-82
  • 37 Weathers PJ, Towler MJ, Xu J. Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 2010; 85: 1339-1351
  • 38 Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 2011; 46: 23-34
  • 39 Expósito O, Bonfill M, Onrubia M, Jané A, Moyano E, Cusidó RM, Palazón J, Piñol MT. Effect of taxol feeding on taxol and related taxane production in Taxus baccata suspension cultures. N Biotechnol 2009; 25: 252-259
  • 40 Qinghaosu Antimalaria Coordinating Research Group. Antimalaria studies on Qinghaosu. Chin Med J (Engl) 1979; 92: 811-816
  • 41 Ge H. Zhou Hou Bei Ji Fang. Tianjin, China: Tianjin Science and Technology Press; 2000
  • 42 Covello PS. Making artemisinin. Phytochemistry 2008; 69: 2881-2885
  • 43 Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 2012; 109: E111-E118
  • 44 Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 2003; 21: 796-802
  • 45 Turconi J, Griolet F, Guevel R, Oddon G, Villa R, Geatti A, Hvala M, Rossen K, Göller R, Burgard A. Semisynthetic artemisinin, the chemical path to industrial production. Org Process Res Dev 2014; 18: 417-422
  • 46 PATH. Sanofi and PATH announce the launch of large-scale production of semisynthetic artemisinin against malaria; 2013. Available at: http://www.path.org/news/press-room/422/ Accessed May 17, 2018
  • 47 Bailey JE. Toward a science of metabolic engineering. Science 1991; 252: 1668-1675
  • 48 Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, van der Krol S, Wessjohann L, Warzecha H. Natural products – modifying metabolite pathways in plants. Biotechnol J 2013; 8: 1159-1171
  • 49 OʼConnor SE. Engineering of secondary metabolism. Annu Rev Genet 2015; 49: 71-94
  • 50 Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H. CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 2008; 96: 1254-1265
  • 51 Dasika MS, Maranas CD. OptCircuit: an optimization based method for computational design of genetic circuits. BMC Syst Biol 2008; 2: 24
  • 52 Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 2013; 20: 146-156
  • 53 Liu W, Stewart CN. Plant synthetic biology. Trends Plant Sci 2015; 20: 309-317
  • 54 Toya Y, Shimizu H. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnol Adv 2013; 31: 818-826
  • 55 Dromms R, Styczynski M. Systematic applications of metabolomics in metabolic engineering. Metabolites 2012; 2: 1090-1122
  • 56 de la Parra J, Quave CL. Ethnophytotechnology: harnessing the power of ethnobotany with biotechnology. Trends Biotechnol 2017; 35: 802-806
  • 57 Pharmacompass. Natural product selling and pricing list. Available at: https://www.pharmacompass.com Accessed May 17, 2018
  • 58 Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MAG. High-yield resveratrol production in engineered Escherichia coli . Appl Environ Microbiol 2011; 77: 3451-3460
  • 59 Fulzele DP, Heble MR. Large-scale cultivation of Catharanthus roseus cells: production of ajamalicine in a 20-l airlift bioreactor. J Biotechnol 1994; 35: 1-7
  • 60 Ramachandra Rao S, Ravishankar GA. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 2002; 20: 101-153
  • 61 Ravishankar GA, Ramachandra Rao S. Biotechnological production of phyto-pharmaceuticals. J Biochem Mol Biol Biophys 2000; 4: 73-102
  • 62 Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR. Improved vanillin production in bakerʼs yeast through in silico design. Microb Cell Fact 2010; 9: 84
  • 63 Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJA, Pronk JT, Daran JM. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae . Microb Cell Fact 2012; 11: 155
  • 64 Katz M, Durhuus T, Smits HP, Förster J. Production of metabolites. Patent WO2011147818; 2011.
  • 65 Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013; 496: 528-532
  • 66 Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 2014; 10: 837-844