Rofo 2018; 190(11): 1036-1043
DOI: 10.1055/a-0628-7260
Review
© Georg Thieme Verlag KG Stuttgart · New York

The Role of Brain Connectome Imaging in the Estimation of Depressive Relapse Risk

Bildgebung des Gehirn-Konnektoms und depressives Rezidivrisiko
Felix Brandl
Department of Neuroradiology and Department of Psychiatry, Klinikum rechts der Isar, Technical University Munich, Germany
,
Chun Meng
Department of Neuroradiology and Department of Psychiatry, Klinikum rechts der Isar, Technical University Munich, Germany
,
Claus Zimmer
Department of Neuroradiology and Department of Psychiatry, Klinikum rechts der Isar, Technical University Munich, Germany
,
Christian Sorg
Department of Neuroradiology and Department of Psychiatry, Klinikum rechts der Isar, Technical University Munich, Germany
› Author Affiliations
Further Information

Publication History

14 January 2018

26 April 2018

Publication Date:
13 August 2018 (online)

Abstract

Background About two-thirds of all patients with major depressive disorder (MDD) suffer from depressive relapse, the mechanisms of which are still poorly understood. In recent years, analyses of the brain’s connectome have increasingly been employed to identify potential biomarkers of depressive relapse. The term “connectome” refers to the map of all structural or functional connections in the brain. It can be investigated by structural or functional magnetic resonance imaging followed by graph theory-based analysis to characterize network topology on the global and regional level.

Methods This review is based on a selective literature search in PubMed representing the current state of research, as well as on an already published study which was awarded the Promotionspreis of the Deutsche Röntgengesellschaft.

Results and Conclusion Numerous studies point to altered network topology, e. g., of default-mode network and striatum, as being crucial for the pathophysiology of MDD. Our group was able to show that striatal centrality (or hubness) is associated with the number of depressive episodes, which is one of the best predictors for depressive relapse. These data suggest aberrant striatal network topology as a potential biomarker for depressive relapse risk. The translation of these promising findings into clinical routine diagnostics is promoted by several methodological advantages, while some unresolved issues still hinder this process.

Key points

  • About two-thirds of all patients with MDD suffer from depressive relapse.

  • The mechanisms of depressive relapse are still poorly understood.

  • Imaging the brain’s connectome can contribute to better understanding of depressive relapse.

  • The term “connectome” comprises all structural and functional connections of the brain.

  • Altered striatal network topology could be associated with depressive relapse risk.

Citation Format

  • Brandl F, Meng C, Zimmer C et al. The Role of Brain Connectome Imaging in the Estimation of Depressive Relapse Risk. Fortschr Röntgenstr 2018; 190: 1036 – 1043

Zusammenfassung

Hintergrund Ungefähr zwei Drittel aller Patienten mit depressiver Störung (major depressive disorder, MDD) erleiden ein Rezidiv. Die Mechanismen des depressiven Rezidivs sind allerdings noch wenig verstanden. In den letzten Jahren wurde zunehmend das Konnektom des Gehirns untersucht, um mögliche Biomarker eines depressiven Rezidivs zu identifizieren. Der Begriff „Konnektom“ beschreibt die Karte aller struktureller und funktioneller Verbindungen des Gehirns. Es kann mittels struktureller oder funktioneller Magnetresonanztomografie und anschließender Graphentheorie-basierter Analyse untersucht werden, um die Netzwerk-Topologie auf globaler und regionaler Ebene zu beschreiben.

Methode Diese Übersichtsarbeit basiert auf einer selektiven Literaturrecherche in PubMed, die den aktuellen Forschungsstand repräsentiert, sowie auf einer eigenen bereits publizierten Arbeit, die mit dem Promotionspreis der Deutschen Röntgengesellschaft ausgezeichnet wurde.

Ergebnisse und Schlussfolgerungen Zahlreiche Studien zeigen, dass eine veränderte Netzwerk-Topologie, z. B. von Default-mode Netzwerk und Striatum, eine entscheidende Rolle in der Pathophysiologie der Depression spielt. Unsere Arbeitsgruppe konnte zeigen, dass striatale Netzwerk-Zentralität (oder Hubness) mit der Anzahl depressiver Episoden assoziiert ist, welche einer der besten Prädiktoren für ein depressives Rezidiv ist. Diese Daten legen aberrante striatale Netzwerk-Topologie als möglichen Biomarker eines depressiven Rezidivs nahe. Die Translation dieser vielversprechenden Befunde in die klinische Routine-Diagnostik wird durch zahlreiche methodologische Vorteile befördert, wohingegen einige ungelöste Probleme diesen Prozess noch behindern.

Kernaussagen

  • Ungefähr zwei Drittel aller Patienten mit Depression erleiden ein Rezidiv.

  • Die Mechanismen des depressiven Rezidivs sind noch wenig verstanden.

  • Die Bildgebung des Gehirn-Konnektoms kann zum besseren Verständnis des depressiven Rezidivs beitragen.

  • Der Begriff „Konnektom“ umfasst alle strukturellen und funktionellen Verbindungen/Netzwerke des Gehirns.

  • Eine veränderte striatale Netzwerk-Topologie könnte mit dem depressiven Rezidivrisiko assoziiert sein.

 
  • References

  • 1 Kessler RC, Birnbaum H, Bromet E. et al. Age differences in major depression: results from the National Comorbidity Survey Replication (NCS-R). Psychol Med 2010; 40: 225-237
  • 2 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington: VA: American Psychiatric Association; 2013
  • 3 Bradvik L, Mattisson C, Bogren M. et al. Long-term suicide risk of depression in the Lundby cohort 1947–1997--severity and gender. Acta Psychiatr Scand 2008; 117: 185-191
  • 4 Hardeveld F, Spijker J, De Graaf R. et al. Prevalence and predictors of recurrence of major depressive disorder in the adult population. Acta Psychiatr Scand 2010; 122: 184-191
  • 5 Keller MB, Boland RJ. Implications of failing to achieve successful long-term maintenance treatment of recurrent unipolar major depression. Biol Psychiatry 1998; 44: 348-360
  • 6 Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 2004; 161: 1957-1966
  • 7 Wise T, Radua J, Via E. et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol Psychiatry 2017; 22: 1455-1463
  • 8 MacQueen GM, Campbell S, McEwen BS. et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A 2003; 100: 1387-1392
  • 9 Kronmuller KT, Pantel J, Kohler S. et al. Hippocampal volume and 2-year outcome in depression. Br J Psychiatry 2008; 192: 472-473
  • 10 Frodl T, Jager M, Smajstrlova I. et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci 2008; 33: 423-430
  • 11 Sporns O, Tononi G, Kotter R. The human connectome: A structural description of the human brain. PLoS Comput Biol 2005; 1: e42
  • 12 Bullmore ET, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009; 10: 186-198
  • 13 Biswal B, Yetkin FZ, Haughton VM. et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34: 537-541
  • 14 Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007; 8: 700-711
  • 15 Ogawa S, Lee TM, Kay AR. et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990; 87: 9868-9872
  • 16 Hillman EM. Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 2014; 37: 161-181
  • 17 Raichle ME. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci U S A 1998; 95: 765-772
  • 18 Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010; 52: 1059-1069
  • 19 Girvan M, Newman ME. Community structure in social and biological networks. Proc Natl Acad Sci U S A 2002; 99: 7821-7826
  • 20 Ravasz E, Somera AL, Mongru DA. et al. Hierarchical organization of modularity in metabolic networks. Science 2002; 297: 1551-1555
  • 21 Guimera R, Mossa S, Turtschi A. et al. The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci U S A 2005; 102: 7794-7799
  • 22 van den Heuvel MP, Bullmore ET, Sporns O. Comparative Connectomics. Trends Cogn Sci 2016; 20: 345-361
  • 23 van den Heuvel MP, Scholtens LH, de Reus MA. et al. Associated Microscale Spine Density and Macroscale Connectivity Disruptions in Schizophrenia. Biol Psychiatry 2016; 80: 293-301
  • 24 Fornito A, Zalesky A, Pantelis C. et al. Schizophrenia, neuroimaging and connectomics. Neuroimage 2012; 62: 2296-2314
  • 25 Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci 2014; 15: 683-695
  • 26 Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci 2015; 16: 159-172
  • 27 Gong Q, He Y. Depression, Neuroimaging and Connectomics: A Selective Overview. Biol Psychiatry 2015; 77: 223-235
  • 28 Lo CY, Wang PN, Chou KH. et al. Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. J Neurosci 2010; 30: 16876-16885
  • 29 Skidmore F, Korenkevych D, Liu Y. et al. Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neurosci Lett 2011; 499: 47-51
  • 30 Shu N, Liu Y, Li K. et al. Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb Cortex 2011; 21: 2565-2577
  • 31 Pandit AS, Expert P, Lambiotte R. et al. Traumatic brain injury impairs small-world topology. Neurology 2013; 80: 1826-1833
  • 32 Zhang Z, Liao W, Chen H. et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 2011; 134: 2912-2928
  • 33 Lynall ME, Bassett DS, Kerwin R. et al. Functional connectivity and brain networks in schizophrenia. J Neurosci 2010; 30: 9477-9487
  • 34 van den Heuvel MP, Sporns O, Collin G. et al. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 2013; 70: 783-792
  • 35 Shin DJ, Jung WH, He Y. et al. The effects of pharmacological treatment on functional brain connectome in obsessive-compulsive disorder. Biol Psychiatry 2014; 75: 606-614
  • 36 Reess TJ, Rus OG, Schmidt R. et al. Connectomics-based structural network alterations in obsessive-compulsive disorder. Transl Psychiatry 2016; 6: e882
  • 37 Bai F, Shu N, Yuan Y. et al. Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J Neurosci 2012; 32: 4307-4318
  • 38 Korgaonkar MS, Fornito A, Williams LM. et al. Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry 2014; 76: 567-574
  • 39 Qin J, Wei M, Liu H. et al. Abnormal brain anatomical topological organization of the cognitive-emotional and the frontoparietal circuitry in major depressive disorder. Magn Reson Med 2014; 72: 1397-1407
  • 40 Zeng J, Luo Q, Du L. et al. Reorganization of Anatomical Connectome following Electroconvulsive Therapy in Major Depressive Disorder. Neural Plast 2015; 2015: 271674
  • 41 Zhang J, Wang J, Wu Q. et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 2011; 70: 334-342
  • 42 Meng C, Brandl F, Tahmasian M. et al. Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain 2014; 137: 598-609
  • 43 Lord A, Horn D, Breakspear M. et al. Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One 2012; 7: e41282
  • 44 Bohr IJ, Kenny E, Blamire A. et al. Resting-state functional connectivity in late-life depression: higher global connectivity and more long distance connections. Front Psychiatry 2012; 3: 116
  • 45 Jin C, Gao C, Chen C. et al. A preliminary study of the dysregulation of the resting networks in first-episode medication-naive adolescent depression. Neurosci Lett 2011; 503: 105-109
  • 46 Tao H, Guo S, Ge T. et al. Depression uncouples brain hate circuit. Mol Psychiatry 2013; 18: 101-111
  • 47 Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 2013; 229: 90-100
  • 48 Preibisch C, Castrillon GJ, Buhrer M. et al. Evaluation of Multiband EPI Acquisitions for Resting State fMRI. PLoS One 2015; 10: e0136961
  • 49 Attwell D, Buchan AM, Charpak S. et al. Glial and neuronal control of brain blood flow. Nature 2010; 468: 232-243
  • 50 Logothetis NK, Pauls J, Augath M. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150-157
  • 51 Pan WJ, Thompson GJ, Magnuson ME. et al. Infraslow LFP correlates to resting-state fMRI BOLD signals. Neuroimage 2013; 74: 288-297
  • 52 Matsui T, Murakami T, Ohki K. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc Natl Acad Sci U S A 2016; 113: 6556-6561
  • 53 Cauli B, Tong XK, Rancillac A. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 2004; 24: 8940-8949
  • 54 Takano T, Tian GF, Peng W. et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9: 260-267
  • 55 Peppiatt CM, Howarth C, Mobbs P. et al. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006; 443: 700-704
  • 56 Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985) 2006; 100: 328-335
  • 57 Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012; 59: 431-438
  • 58 Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci 2010; 4: 19
  • 59 Cordes D, Haughton VM, Arfanakis K. et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 2001; 22: 1326-1333
  • 60 Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000; 44: 162-167
  • 61 Braun U, Plichta MM, Esslinger C. et al. Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 2012; 59: 1404-1412
  • 62 Andellini M, Cannata V, Gazzellini S. et al. Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review. J Neurosci Methods 2015; 253: 183-192
  • 63 Wang J, Wang L, Zang Y. et al. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 2009; 30: 1511-1523
  • 64 Zalesky A, Fornito A, Harding IH. et al. Whole-brain anatomical networks: does the choice of nodes matter?. Neuroimage 2010; 50: 970-983
  • 65 van den Heuvel MP, Stam CJ, Boersma M. et al. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 2008; 43: 528-539
  • 66 Tagliazucchi E, Siniatchkin M, Laufs H. et al. The Voxel-Wise Functional Connectome Can Be Efficiently Derived from Co-activations in a Sparse Spatio-Temporal Point-Process. Front Neurosci 2016; 10: 381