Rofo 2018; 190(12): 1131-1140
DOI: 10.1055/a-0628-7222
Pediatric Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Radiation Dose Optimization in Pediatric Chest CT: Major Indicators of Dose Exposure in 1695 CT Scans over Seven Years

Optimierung der Strahlendosis in der Thorax-CT des Kindes: Einflussfaktoren der Strahlenexposition aus 1695 CT-Untersuchungen in sieben Jahren
Michael Esser
Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
,
Sabine Hess
Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
,
Matthias Teufel
Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
,
Mareen Sarah Kraus
Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
,
Sven Schneeweiß
Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
,
Sergios Gatidis
Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
,
Juergen F Schaefer
Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
,
Ilias Tsiflikas
Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
› Author Affiliations
Further Information

Publication History

30 September 2017

24 April 2018

Publication Date:
11 October 2018 (online)

Abstract

Purpose To analyze possible influencing factors on radiation exposure in pediatric chest CT using different approaches for radiation dose optimization and to determine major indicators for dose development.

Materials and Methods In this retrospective study at a clinic with maximum care facilities including pediatric radiology, 1695 chest CT examinations in 768 patients (median age: 10 years; range: 2 days to 17.9 years) were analyzed. Volume CT dose indices, effective dose, size-specific dose estimate, automatic dose modulation (AEC), and high-pitch protocols (pitch ≥ 3.0) were evaluated by univariate analysis. The image quality of low-dose examinations was compared to higher dose protocols by non-inferiority testing.

Results Median dose-specific values annually decreased by an average of 12 %. High-pitch mode (n = 414) resulted in lower dose parameters (p < 0.001). In unenhanced CT, AEC delivered higher dose values compared to scans with fixed parameters (p < 0.001). In contrast-enhanced CT, the use of AEC yielded a significantly lower radiation dose only in patients older than 16 years (p = 0.04). In the age group 6 to 15 years, the values were higher (p < 0.001). The diagnostic image quality of low-dose scans was non-inferior to high-dose scans (2.18 vs. 2.14).

Conclusion Radiation dose of chest CT was reduced without loss of image quality in the last decade. High-pitch scanning was an independent factor in this context. Dose reduction by AEC was limited and only relevant for patients over 16 years.

Key Points

  • The radiation dose of pediatric chest CT was reduced in the last decade.

  • High-pitch scanning is an independent factor of dose optimization.

  • Dose reduction by AEC is limited and only relevant for older children.

Citation Format

  • Esser M, Hess S, Teufel M et al. Radiation Dose Optimization in Pediatric Chest CT: Major Indicators of Dose Exposure in 1695 CT Scans over Seven Years. Fortschr Röntgenstr 2018; 190: 1131 – 1140

Zusammenfassung

Ziel Analyse möglicher Einflussfaktoren auf die Strahlenexposition bei der Thorax-CT des Kindes unter Anwendung verschiedener Methoden der Dosisoptimierung und Bestimmung von Kenngrößen für die Dosisentwicklung.

Material und Methoden In dieser retrospektiven Studie an einer Klinik der Maximalversorgung einschließlich einer Abteilung für Kinderradiologie wurden 1695 Thorax-CTs von 768 Patienten (mittleres Alter, 10 Jahre; Spannweite, zwei Tage bis 17,9 Jahre) analysiert. Volumen-CT-Dosisindex, effektive Dosis und size-specific dose estimate, automatische Dosismodulation (AEC), sowie High-Pitch-Protokolle (Pitch ≥ 3,0) wurden mittels univariater Analyse ausgewertet. Die Bildqualität von Niedrigdosis-Untersuchungen wurde zu Protokollen mit höherer Dosis mittels „Non-Inferiority“-Analyse verglichen.

Ergebnisse Die medianen Dosiswerte sanken pro Jahr um durchschnittlich 12 %. Untersuchungen mit High-Pitch-Modus (n = 414) lieferten geringere Dosiswerte (p < 0,001). In nativen Untersuchungen mit AEC ergaben sich höhere Dosiswerte im Vergleich zu Untersuchungen mit manuell festgelegten Parametern (p < 0,001). In kontrastangehobenen CTs erzielte die AEC nur bei Patienten über 16 Jahren signifikant niedrigere Dosiswerte (p = 0,04). Im Alter von 6 bis 15 Jahren waren die Dosiswerte mit AEC höher (p < 0,001). Die diagnostische Bildqualität von Niedrigdosis-Untersuchungen war den CTs mit höherer Dosis nicht unterlegen (2,18 vs. 2,14).

Schlussfolgerung Im letzen Jahrzehnt wurden die Dosiswerte der Thorax-CT ohne Verlust der Bildqualität reduziert. High-Pitch-Protokolle sind in diesem Zusammenhang ein unabhängiger Einflussfaktor. Die Dosisreduktion mittels AEC war beschränkt und nur für Patienten über 16 Jahren relevant.

Kernaussagen

  • Im letzten Jahrzehnt konnte die Strahlendosis der Thorax-CT bei Kindern reduziert werden.

  • Die Untersuchung mit hohen Pitch-Werten ist ein unabhängiger Faktor der Dosisoptimierung.

  • Die Dosisreduktion der AEC ist beschränkt und nur für ältere Kinder relevant.

 
  • References

  • 1 Miglioretti DL, Johnson E, Williams A. et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 2013; 167: 700-707
  • 2 Journy N, Ancelet S, Rehel JL. et al. Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach. Radiat Environ Biophys 2014; 53: 39-54
  • 3 European Society of Radiology (ESR). White paper on radiation protection by the European Society of Radiology. Insights Imaging 2011; 2: 357-362
  • 4 Berrington de González A, Mahesh M, Kim KP. et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 2009; 169: 2071-2077
  • 5 Linet MS, Kim KP, Rajaraman P. Children's exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol 2009; 39 (Suppl. 01) S4-S26
  • 6 Nievelstein RA, van Dam IM, van der Molen AJ. Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 2010; 40: 1324-1344
  • 7 Valentin J. (Editor). The 2007 Recommendations of the International Commission on Radiological Protection ICRP publication 103. Ann ICRP 2007; 37: 1-332
  • 8 Pearce MS, Salotti JA, Little MP. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380: 499-505
  • 9 Mathews JD, Forsythe AV, Brady Z. et al. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 2013; 346: f2360
  • 10 Krille L, Dreger S, Schindel R. et al. Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study. Radiat Environ Biophys 2015; 54: 1-12
  • 11 Kalender WA, Buchenau S, Deak P. et al. Technical approaches to the optimisation of CT. Phys Med 2008; 24: 71-79
  • 12 Zheng M, Zhao H, Xu J. et al. Image quality of ultra-low-dose dual-source CT angiography using high-pitch spiral acquisition and iterative reconstruction in young children with congenital heart disease. J Cardiovasc Comput Tomogr 2013; 7: 376-382
  • 13 Kok M, Mihl C, Seehofnerova A. et al. Automated Tube Voltage Selection for Radiation Dose Reduction in CT Angiography Using Different Contrast Media Concentrations and a Constant Iodine Delivery Rate. Am J Roentgenol 2015; 205: 1332-1338
  • 14 Greess H, Wolf H, Baum U. et al. Dosage reduction in computed tomography by anatomy-oriented attenuation-based tube-current modulation: the first clinical results. Rofo 1999; 170: 246-250
  • 15 Braun FM, Johnson TR, Sommer WH. et al. Chest CT using spectral filtration: radiation dose, image quality, and spectrum of clinical utility. Eur Radiol 2015; 25: 1598-1606
  • 16 den Harder AM, Willemink MJ, Budde RP. et al. Hybrid and model-based iterative reconstruction techniques for pediatric CT. Am J Roentgenol 2015; 204: 645-653
  • 17 Lell MM, May M, Deak P. et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol 2011; 46: 116-123
  • 18 Tsiflikas I, Thomas C, Ketelsen D. et al. High-pitch computed tomography of the lung in pediatric patients: an intraindividual comparison of image quality and radiation dose to conventional 64-MDCT. Rofo 2014; 186: 585-590
  • 19 McCollough CH, Primak AN, Braun N. et al. Strategies for reducing radiation dose in CT. Radiol Clin North Am 2009; 47: 27-40
  • 20 Remy-Jardin M, Santangelo T, Colas L. et al. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT. Pediatr Radiol 2017; 47: 161-168
  • 21 Ogden CL, Kuczmarski RJ, Flegal KM. et al. Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics 2002; 109: 45-60
  • 22 Veit R, Guggenberger R, Nosske D. et al. Diagnostic reference levels for X-ray examinations: update 2010. Radiologe 2010; 50: 907-912
  • 23 Bongartz D, Golding SJ, Jurik AG. et al. European Guidelines for Multislice Computed Tomography, Funded by the European Commission, Contract number FIGM-CT2000-20078-CT-TIP. 2004
  • 24 American Association of Physicists in Medicine Report No. 204. Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations. College Park, MD: 2011
  • 25 Ahn S, Park SH, Lee KH. How to demonstrate similarity by using noninferiority and equivalence statistical testing in radiology research. Radiology 2013; 267: 328-338
  • 26 Galanksi M, Nagel HD, Stamm G. Pädiatrische Expositionspraxis in der Bundessrepublik Deutschland. Ergebnisse einer bundesweiten Umfrage 2005/06. Fortschr Röntgenstr 2007; 179: 1110-1111
  • 27 Federal Office for Radiation Protection (BfS). Publication of updated diagnostic reference levels for diagnostic and interventional X-ray examinations. 2016 :4,Tab. 8
  • 28 Achenbach S, Marwan M, Ropers D. et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 2010; 31: 340-34627
  • 29 Esser M, Gatidis S, Teufel M. et al. Contrast-Enhanced High-Pitch Computed Tomography in Pediatric Patients Without Electrocardiography Triggering and Sedation: Comparison of Cardiac Image Quality With Conventional Multidetector Computed Tomography. J Comput Assist Tomogr 2017; 41: 165-171
  • 30 Karmazyn B, Ai H, Liang Y. et al. Effect of body size on dose reduction with longitudinal tube current modulation in pediatric patients. Am J Roentgenol 2015; 204: 861-864
  • 31 The WHO Child Growth Standards (2017, March 18). Retrieved from http://www.who.int/childgrowth/standards/en/
  • 32 Cody DD. Management of auto exposure control during pediatric computed tomography. Pediatr Radiol 2014; 44 (Suppl. 03) 427-430