Fortschr Neurol Psychiatr 2018; 86(09): 535-542
DOI: 10.1055/a-0624-9513
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Therapien von Muskeldystrophien

Molecular therapies in muscular dystrophies
Maggie C. Walter
Friedrich-Baur-Institut, Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München
,
Peter Reilich
Friedrich-Baur-Institut, Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München
› Author Affiliations
Further Information

Publication History

eingereicht 05 March 2018

akzeptiert 02 May 2018

Publication Date:
24 September 2018 (online)

Zusammenfassung

Muskeldystrophien (MD) sind eine heterogene Gruppe genetisch determinierter, progredienter Erkrankungen der Muskulatur. Gemeinsames Merkmal aller MD ist eine fortschreitende Muskelschwäche und -atrophie, deren Schweregrad und Verteilungsmuster bei den verschiedenen Formen deutliche Unterschiede zeigt. Durch enorme Fortschritte in der Grundlagenforschung und ein verbessertes Verständnis der Pathophysiologie haben sich in letzter Zeit vielfältige molekulare Therapieansätze für Muskeldystrophien ergeben; zahlreiche molekulare Therapien befinden sich in der Entwicklung. Neue Entwicklungen im Bereich der personalisierten Gentherapie zielen strategisch auf bestimmte, genetisch determinierte Subtypen der Erkrankung, basierend auf dem jeweiligen Krankheitsmechanismus und dem resultierenden Phänotyp, und setzen damit ein Beispiel für andere hereditäre Erkrankungen. Der Erkenntnisgewinn in diesem Bereich nimmt stetig zu; dennoch ist es noch ein weiter Weg, bevor diese Therapieformen Phänotyp und Pathologie und der betroffenen Patienten tatsächlich werden korrigieren können.

Abstract

Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of skeletal muscle-wasting diseases with progressive muscle weakness and atrophy, while disease severity depends on the subtype of the disease. Tremendous progress in basic research and an improved understanding of the pathophyisology of the disease have led to various molecular pipeline therapies for MD. Within the last years, promising new molecular therapies have been developed facilitating causative therapy in the near future. New developments of personalized gene therapy aim at genetically defined disease subgroups of MD, based on the underlying molecular mechanism and the resulting phenotype, and set an example for other hereditary diseases. We have learned tremendously within the last decade; however, there is still a long way to go until these therapeutic strategies will be able to finally cure MD, and not just modify the phenotype and pathology of DMD patients.

 
  • Literaturverzeichnis

  • 1 Walter MC, Klopstock T. Therapie der Muskeldystrophien. In: Diener/Gerloff/Dieterich (Hrsg.) Therapie und Verlauf neurologischer Erkrankungen. Kohlhammer; Stuttgart: 2016
  • 2 Walter MC. Update Therapie bei Muskeldystrophien. Drug Res (Stuttg);2015 ; 65 Suppl 1 : S24
  • 3 Bushby K, Finkel R, Wong B. et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014; 50: 477-487
  • 4 Thornton CA, Wang E, Carrell EM. Myotonic dystrophy: approach to therapy. Curr Opin Genet Dev 2017; 44: 135-140
  • 5 Ansseau E, Vanderplanck C, Wauters A. et al. Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD). Genes 2017; 8 E 93
  • 6 Kemaladewi DU, Maino E, Hyatt E. et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med 2017; 23: 984-989
  • 7 Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13: 647-661
  • 8 Al-Zaidy S, Rodino-Klapac L, Mendell JR. Gene therapy for muscular dystrophy: moving the field forward. Pediatr Neurol. 2014; 51: 607-618
  • 9 Barton-Davis ER, Cordier L, Shoturma DI. et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999; 104: 375-381
  • 10 Howard MT, Anderson CB, Fass U. et al. Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol 2004; 55: 422-426
  • 11 Finkel R, Wong B, Bushby K. et al. Results of a Phase 2b, dose-ranging tudy of ataluren (PTC124) in nonsense mutation Duchenne/Becker muscular Dystrophy (nmDBMB). Neuromuscul Disord 2010; 20: 656-657
  • 12 McDonald CM, Campbell C, Torricelli RE. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390: 1489-1498 .
  • 13 Haas M, Vlcek V. Balabanov P European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscul Disord. 2015; 25: 5-13
  • 14 Aartsma-Rus A, Fokkema I, Verschuuren J. et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 2009; 30: 293-239
  • 15 Meregalli M, Farini A, Torrente Y. Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opin Biol Ther 2008; 8: 1051-1061
  • 16 Mann CJ, Honeyman K. Cheng AJ. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. PNAS 98: 42-47
  • 17 Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L. et al. 2013; . Eteplirsen for the treatment of Duchenne muscular dystrophy Ann Neurol 2001; (74) : 637-647 .
  • 18 Goemans N, Mercuri E, Belousova E. et al. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul Disord 2018; 28: 4-15 .
  • 19 Mendell JR, Rodino-Klapac LR. Sahenk Z. Eteplirsen Study Group.Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol. 2013; 74: 637-647
  • 20 Randeree L, Eslick GD. Eteplirsen for paediatric patients with Duchenne muscular dystrophy: A pooled-analysis. J Clin Neurosci 2017; S0967-5868: 31142-31146
  • 21 Kinane TB, Mayer OH. Duda PW Long-Term Pulmonary Function in Duchenne Muscular Dystrophy: Comparison of Eteplirsen-Treated Patients to Natural History. J Neuromuscul Dis 2018; 5: 47-58
  • 22 Shimo T, Maruyama R, Yokota T. Designing Effective Antisense Oligonucleotides for Exon Skipping. Methods Mol Biol 2018; 1687: 143-155
  • 23 Bowles DE, McPhee SW, Li C. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 2012; 20: 443-455
  • 24 Le Guiner C, Servais L. Montus M. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 2017; 8: 16105
  • 25 Nguyen HH, Jayasinha V. Xia B. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc Natl Acad Sci USA 2002; 99: 5616-5621
  • 26 Chicoine LG, Rodino-Klapac LR. Shao G. Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin a2 surrogates. Mol Ther 2014; 22: 713-724
  • 27 Counsell JR, Asgarian Z. Meng J. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7: 79
  • 28 Li HL, Fujimoto N. Sasakawa N. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPRCas9. Stem Cell Rep 2015; 4: 143-154
  • 29 Ousterout DG, Kabadi AM. Thakore PI. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 2015; 23: 523-532
  • 30 Mou H, Smith JL, Peng L. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 2017; 18: 108
  • 31 Nelson CE, Hakim CH. Ousterout DG. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. 2016; 351: 403-407
  • 32 Long C, Amoasii L. Mireault AAPostnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016; 351: 400-403
  • 33 Tabebordbar M, Zhu K. Cheng JKW. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351: 407-411
  • 34 Dumont NA, Wang YX. von Maltzahn J Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med. 2015; 21: 1455-1463
  • 35 Filareto A, Parker S. Darabi R. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Comm 2013; 4: 1549
  • 36 Benedetti S, Uno N. Hoshiya H. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Mol Med 2018; 10: 254-275
  • 37 Love DR, Hill DF. Dickson G. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 1989; 339: 55-58
  • 38 Deconinck N, Tinsley J. De Backer F. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med 1997; 3: 1216-1221
  • 39 Tinsley JM, Deconinck N. Fisher R. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 1998; 4: 1441-1444
  • 40 Squire S, Raymackers JM. Vandebrouck C. Prevention of pathology in mdx mice by expression of utrophin: analysis using an inducible transgenic expression system. Hum Mol Genet 2002; 11: 3333-3344
  • 41 Judge LM, Arnett AL, Banks GB. et al. Expression of the dystrophin isoform Dp116 preserves functional muscle mass and extends lifespan without preventing dystrophy in severely dystrophic mice. Hum Mol Genet 2011; 20: 4978-4090
  • 42 Tinsley JM, Fairclough RJ. Storer R. Daily treatmentwith SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLOS ONE 2011; 6: e19189
  • 43 Tinsley JM, Fairclough RJ. Storer R. Daily treatmentwith SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLOS ONE 2011; 6: e19189 .
  • 44 Guiraud S, Davies KE. Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol 2017; 34: 36-48
  • 45 Basu U, Lozynska O. Moorwood C. Translational regulation of utrophin by miRNAs. PLoS One 2011; 6: e29376
  • 46 Vianello S, Yu H, Voisin V. et al. Arginine butyrate: a therapeutic candidate for Duchenne muscular dystrophy. FASEB J 2013; 27: 2256-2269
  • 47 Amenta AR, Yilmaz A. Bogdanovich S. Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc. Natl. Acad. Sci. USA 2011; 108: 762-767
  • 48 Gibbs EM, Marshall JL. Ma E. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum. Mol. Genet. 2016; 25: 5395-5406
  • 49 Wagner KR, Fleckenstein JL. Amato AAA. phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 2008; 63: 561-571
  • 50 Attie KM, Borgstein NG. Yang Y A. single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. Muscle Nerve 2013; 47: 416-423
  • 51 Mendell JR, Sahenk Z. Malik V A. phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol Ther 2015; 23: 192-201
  • 52 Walter MC, Reilich P. Recent developments in Duchenne muscular dystrophy: facts and numbers. J Cachexia Sarcopenia Muscle . 2017; 8: 681-685
  • 53 Thompson R, Straub S. Limb-girdle muscular dystrophies – international collaborations for translational research. Nature Reviews Neurology 2016; 12: 294-309