Subscribe to RSS
DOI: 10.1055/a-0614-2680
Leishmanicidal Effects of Piperlongumine (Piplartine) and Its Putative Metabolites
Publication History
received 14 October 2017
revised 05 April 2018
accepted 15 April 2018
Publication Date:
15 May 2018 (online)
Abstract
Piperlongumine is an amide alkaloid found in Piperaceae species that shows a broad spectrum of biological properties, including antitumor and antiparasitic activities. Herein, the leishmanicidal effect of piperlongumine and its derivatives produced by a biomimetic model using metalloporphyrins was investigated. The results showed that IC50 values of piperlongumine in promastigote forms of Leishmania infantum and Leishmania amazonensis were 7.9 and 3.3 µM, respectively. The IC50 value of piperlongumine in the intracellular amastigote form of L. amazonensis was 0.4 µM, with a selectivity index of 25. The piperlongumine biomimetic derivatives, Ma and Mb, also showed leishmanicidal effects. We also carried out an in vitro metabolic degradation study showing that Ma is the most stable piperlongumine derivative in rat liver microsome incubations. The results presented here indicate that piperlongumine is a potential leishmanicidal candidate and support the biomimetic approach for development of new antileishmanial derivatives.
Key words
cyclic amides - piplartine - metalloporphyrin - leishmaniasis - selectivity index - piperlongumine - Piperaceae - analoguesSupporting Information
- Supporting Information
Biomimetic reaction conditions tested, HPLC chromatograms in analytical and semipreparative scales for the reaction selected, MS and NMR spectra of Ma and Mb, and IC50s of AMPH in L. amazonensis and L. infantum promastigotes are available as Supporting Information.
-
References
- 1 Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, Boer M. The WHO leishmaniasis control team, 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012; 7: e35671
- 2 World Health Organization. WHO to implement online epidemiological surveillance for leishmaniasis, 2016. Available at: http://www.who.int/neglected_diseases/news/WHO_implement_epidemiological_surveillance_leishmaniasis/en/ Accessed August 24, 2016
- 3 Cota GF, Sousa MR, Mendonça ALP, Patrocinio A, Assunção LS, Faria SR, Rabello A. Leishmania-HIV co-infection: clinical presentation and outcomes in an urban area in brazil. PLoS Neglected Trop Dis 2014; 8: e2816
- 4 Elmahallawy EK, Agil A. Treatment of leishmaniasis: a review and assessment of recent research. Curr Pharm Des 2015; 21: 2259-2275
- 5 de Menezes JPB, Guedes CES, Petersen ALOA, Fraga DBM, Veras PST. Advances in development of new treatment for leishmaniasis. Biomed Res Intern 2015; 2015: 815023
- 6 Balasegaram M, Ritmeijer K, Lima MA, Burza S, Genovese GO, Milani B, Gaspani S, Potet J, Chappuis F. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerging Drugs 2012; 17: 493-510
- 7 Cheuka PM, Mayoka G, Mutai P, Chibale K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 2017; 22: e58
- 8 Ndjonka D, Rapado LN, Silber AM, Liebau E, Wrenger C. Natural products as a source for treating neglected parasitic diseases. Int J Mol Sci 2013; 14: 3395-3439
- 9 Gutierrez RMP, Gonzalez AMN, Hoyo-Vadillo C. Alkaloids from Piper: a review of its phytochemistry and pharmacology. Mini Rev Med Chem 2013; 13: 163-193
- 10 Mgbeahuruike EE, Yrjönen T, Vuorela H, Holm Y. Bioactive compounds from medicinal plants: Focus on Piper species. S Afr J Chem Botany 2017; 112: 54-69
- 11 Zheng J, Son DJ, Gu SM, Woo JR, Ham YW, Lee HP, Kim WJ, Jung JK, Hong JT. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway. Sci Rep 2016; 6: 26357
- 12 Bharadwaj U, Eckols TK, Kolosov M, Kasembeli MM, Adam A, Torres D, Zhang X, Dobrolecki LE, Wei W, Lewis MT, Dave B, Chang JC, Landis MD, Creighton CJ, Mancini MA, Tweardy DJ. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene 2015; 34: 1341-1353
- 13 Bezerra DP, Pessoa C, de Moraes MO, Saker-Neto N, Silveira ER, Costa-Lotufo LV. Overview of the therapeutic potential of piplartine (PPL). Eur J Pharm Sci 2013; 48: 453-463
- 14 Raj L, Ide T, Gurkar AU, Foley M, Scenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL, Lee SW. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475: 231-234
- 15 Araújo-Vilges KM, Oliveira SV, Couto SCP, Fokoue HH, Romero GAS, Kato MJ, Romeiro LAS, Leite JRSA, Kuckelhaus SAS. Effect of piplartine and cinnamides on Leishmania amazonensis, Plasmodium falciparum and on peritoneal cells of Swiss mice. Pharm Biol 2017; 55: 1601-1607
- 16 Moraes J, Keiser J, Ingram K, Nascimento C, Yamaguchi LF, Bittencourt CR, Bemquerer MP, Leite JR, Kato MJ, Nakano E. In vitro synergistic interaction between amide piplartine and antimicrobial peptide dermaseptin against Schistosoma mansoni schistosomula and adult worms. Curr Med Chem 2013; 20: 301-309
- 17 Moraes Jd. Nascimento C, Lopes PO, Nakano E, Yamaguchi LF, Kato MJ, Kawano T. Schistosoma mansoni: In vitro schistosomicidal activity of piplartine. Exp Parasitol 2011; 127: 357-364
- 18 Bodiwala HS, Singh G, Singh CS, Dey SS, Sharma KK, Bhutani IP. Antileishmanial amides and lignans from Piper cubeba and Piper retroforactum . Nat Med 2007; 61: 418-421
- 19 Wang YH, Wang LT, Hsieh KY, Natschke SL, Tang GH, Long CL, Lee KH. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues. Bioorg Med Chem Lett 2014; 24: 4818-4821
- 20 Sun LD, Wang F, Dai F, Wang YH, Lin D, Zhou B. Development and mechanism investigation of a new PPL derivative as a potent anti-inflammatory agent. Biochem Pharmacol 2015; 95: 156-169
- 21 Cusack KP, Koolman HF, Lange UEW, Peltier HM, Piel I, Vasudevan A. Emerging technologies for metabolite generation and structural diversification. Bioorg Med Chem Lett 2015; 23: 5471-5483
- 22 Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol 2008; 21: 70-83
- 23 Moreira FL, Habenschus M, Barth T, Marques LMM, Pilon AC, Bolzani VS, Vessecchi R, Lopes NP, Oliveira ARM. Metabolic profile and safety of piperlongumine. Sci Rep 2016; 6: 33646
- 24 Marques LMM, da Silva jr. EA, Gouvea DR, Vessecchi R, Pupo MT, Lopes NP, Kato MJ, de Oliveira AR. In vitro metabolism of the alkaloid piplartine by rat liver microsomes. J Pharm Biomed Anal 2014; 95: 113-120
- 25 Bauermeister A, Aguiar FA, Marques LMM, Malta-Júnior JS, Barros F, Callejon DR, Oliveira ARM, Lopes NP. In vitro metabolism evaluation of the ergot alkaloid dihydroergotamine: application of microsomal and biomimetic oxidative model. Planta Med 2016; 82: 1368-1373
- 26 Niehues M, Barros VP, Emery FS, Dias-Baruffi M, Assis MD, Lopes NP. Biomimetic in vitro oxidation of lapachol: a model to predict and analyse the in vivo phase I metabolism of bioactive compounds. Eur J Med Chem 2012; 54: 804-812
- 27 Adams DJ, Dai M, Pellegrino G, Wagner BK, Stern AM, Shamji AF, Schreiber SL. Synthesis, cellular evaluation, and mechanism of action of PPL analogs. Proc Natl Acad Sci U S A 2012; 109: 15115-15120
- 28 Don R, Ioset JR. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 2014; 141: 140-146
- 29 Pink R, Hudson A, Mouries MA, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 2005; 4: 727-740
- 30 Liu JM, Pan F, Li L, Liu QR, Chen Y, Xiong XX, Cheng K, Yu SB, Yu ACH, Chen XQ. Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation. Biochem Biophys Res Commun 2013; 436: 87-93
- 31 Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Menna-Barreto RFS, Almeida-Amaral EE. Oral efficacy of apigenin against cutaneous leishmaniasis: involvement of reactive oxygen species and autophagy as a mechanism of action. PLoS Negl Trop Dis 2016; 10: e0004442
- 32 Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J Nat Prod 2013; 76: 1505-1508
- 33 Katsuno K, Burrows JN, Duncan K, Huijsduijnen RH, Kaneko T, Kita K, Mowbray CE, Schmatz D, Warner P, Slingsby BT. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov 2015; 14: 751-758
- 34 Sharefkin JG, Saltzman H. Organic Syntheses Collective. Organic Syntheses, Inc 1973; 5: 660
- 35 Lucas HJ, Kenedy ER, Forno MW. Organic Syntheses Collective. Organic Syntheses, Inc 1963; 43: 62