Planta Med 2018; 84(16): 1201-1212
DOI: 10.1055/a-0608-4870
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Advantages of Molecular Weight Identification during Native MS Screening

Ahad Khan
1   Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
,
Anne Bresnick
2   Albert Einstein College of Medicine, Bronx, NY, USA
,
Sean Cahill
2   Albert Einstein College of Medicine, Bronx, NY, USA
,
Mark Girvin
2   Albert Einstein College of Medicine, Bronx, NY, USA
,
Steve Almo
2   Albert Einstein College of Medicine, Bronx, NY, USA
,
Ronald Quinn
1   Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
› Author Affiliations
Further Information

Publication History

received 03 October 2017
revised 01 April 2018

accepted 11 April 2018

Publication Date:
09 May 2018 (online)

Abstract

Native mass spectrometry detection of ligand-protein complexes allowed rapid detection of natural product binders of apo and calcium-bound S100A4 (a member of the metal binding protein S100 family), T cell/transmembrane, immunoglobulin (Ig), and mucin protein 3, and T cell immunoreceptor with Ig and ITIM (immunoreceptor tyrosine-based inhibitory motif) domains precursor protein from extracts and fractions. Based on molecular weight common hits were detected binding to all four proteins. Seven common hits were identified as apigenin 6-C-β-D-glucoside 8-C-α-L-arabinoside, sweroside, 4′,5-dihydroxy-7-methoxyflavanone-6-C-rutinoside, loganin acid, 6-C-glucosylnaringenin, biochanin A 7-O-rutinoside and quercetin 3-O-rutinoside. Mass guided isolation and NMR identification of hits confirmed the mass accuracy of the ligand in the ligand-protein MS complexes. Thus, molecular weight ID from ligand-protein complexes by electrospray ionization Fourier transform mass spectrometry allowed rapid dereplication. Native mass spectrometry using electrospray ionization Fourier transform mass spectrometry is a tool for dereplication and metabolomics analysis.

Supporting Information

 
  • References

  • 1 Williams DH, Stone MJ, Hauck PR, Rahman SK. Why are secondary metabolites (natural products) biosynthesized?. J Nat Prod 1989; 52: 1189-1208
  • 2 Kellenberger E, Hofmann A, Quinn RJ. Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. Nat Prod Rep 2011; 28: 1483-1492
  • 3 Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 1998; 17: 1-35
  • 4 Pramanik BN, Bartner PL, Mirza UA, Liu YH, Ganguly AK. Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology. J Mass Spectrom 1998; 33: 911-920
  • 5 Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem 2012; 2012: 282574
  • 6 Camp D, Davis RA, Campitelli M, Ebdon J, Quinn RJ. Drug-like properties: guiding principles for the design of natural product libraries. J Nat Prod 2011; 75: 72-81
  • 7 Camp D, Campitelli M, Carroll AR, Davis RA, Quinn RJ. Front-loading natural-product-screening libraries for log P: background, development, and implementation. Chem Biodiver 2013; 10: 524-537
  • 8 Collins R, Ng T, Fong W, Wan C, Yeung H. Removal of polyphenolic compounds from aqueous plant extracts using polyamide minicolumns. IUBMB Life 1998; 45: 791-796
  • 9 Fei F, Qu J, Zhang M, Li Y, Zhang S. S100A4 in cancer progression and metastasis: a systematic review. Oncotarget 2017; 8: 73219
  • 10 DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT, Freeman GJ, Casasnovas JM. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 2010; 84: 1918-1930
  • 11 Lee J, Phong B, Egloff AM, Kane LP. TIM polymorphisms – genetics and function. Genes Immun 2011; 12: 595-604
  • 12 Bu X, Ballesteros A, Chim YL, Santiago C, Lee HH, Umetsu D, Casasnovas J, DeKruyff R, Freeman G. TIM-3 is a receptor for phosphatidylserine and allelic variants differentially mediate uptake of apoptotic cells. J Immunol 2010; 184: 130-141
  • 13 Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13: 832-842
  • 14 Wu J, Liu C, Qian S, Hou H. The expression of Tim-3 in peripheral blood of ovarian cancer. DNA Cell Biol 2013; 32: 648-653
  • 15 Piao YR, Piao LZ, Zhu LH, Jin ZH, Dong XZ. Prognostic value of T cell immunoglobulin mucin-3 in prostate cancer. Asian Pac J Cancer Prev 2013; 14: 3897-3901
  • 16 Gao X, Li C, Pan X, Li L, Fu J, Yao W. Expression and significance of Tim-3 on peripheral blood monocytes in patients with chronic hepatitis B. Chinese J Cell Mol Immunol 2013; 29: 739-743
  • 17 Leitner J, Rieger A, Pickl WF, Zlabinger G, Grabmeier-Pfistershammer K, Steinberger P. TIM-3 does not act as a receptor for galectin-9. PLoS Pathog 2013; 9: e1003253
  • 18 Yan J, Zhang Y, Zhang JP, Liang J, Li L, Zheng L. Tim-3 expression defines regulatory T cells in human tumors. PLoS One 2013; 8: e58006
  • 19 Bai J, Li X, Tong D, Shi W, Song H, Li Q. T-cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and prognosis of non-small-cell lung cancer. Tumor Biol 2013; 34: 805-809
  • 20 Roth CG, Garner K, Eyck ST, Boyiadzis M, Kane LP, Craig FE. TIM3 expression by leukemic and non-leukemic myeloblasts. Cytometry B Clin Cytom 2013; 84: 167-172
  • 21 Lee MJ, Woo MY, Heo YM, Kim JS, Kwon MH, Kim K, Park S. The inhibition of the T-cell immunoglobulin and mucin domain 3 (Tim3) pathway enhances the efficacy of tumor vaccine. Biochem Biophys Res Commun 2010; 402: 88-93
  • 22 Liu XG, Hou M, Liu Y. TIGIT, a novel therapeutic target for tumor immunotherapy. Immunol Invest 2017; 46: 172-182
  • 23 Chen X, Lu PH, Liu L, Fang ZM, Duan W, Liu ZL, Wang CY, Zhou P, Yu XF, He WT. TIGIT negatively regulates inflammation by altering macrophage phenotype. Immunobiology 2016; 221: 48-55
  • 24 Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA. The TIGIT/CD226 axis regulates human T cell function. J Immunol 2012; 188: 3869-3875
  • 25 Gutzeit HO, Ludwig-Müller J. Plant natural Products: Synthesis, biological Functions and practical Applications. Weinheim: John Wiley & Sons; 2014
  • 26 Cseke LJ, Kirakosyan A, Kaufman PB, Warber S, Duke JA, Brielmann HL. Natural Products from Plants. Boca Raton: CRC Press; 2016
  • 27 Ockey DA, Dotson JL, Struble ME, Stults JT, Bourell JH, Clark KR, Gadek TR. Structure-activity relationships by mass spectrometry: identification of novel MMP-3 inhibitors. Bioorganic Med Chem 2004; 12: 37-44
  • 28 Seigler DS. Plant secondary Metabolism. Norwell: Springer Science & Business Media; 2012
  • 29 Cambie RC, Lal AR, Rickard CE, Tanaka N. Chemistry of Fijian plants. V.: Constituents of Fagraea gracilipes A. Gray. Chem Pharm Bull 1990; 38: 1857-1861
  • 30 Zhou Y, Di YT, Gesang S, Peng SL, Ding LS. Secoiridoid glycosides from Swertia mileensis . Helv Chim Acta 2006; 89: 94-102
  • 31 Calis I, Lahloub MF, Sticher O. Loganin, loganic acid and periclymenoside, a new biosidic ester iridoid glucoside from Lonicera periclymenum L. (Caprifoliaceae). Helv Chim Acta 1984; 67: 160-165
  • 32 Hammami S, Jannet HB, Bergaoui A, Ciavatta L, Cimino G, Mighri Z. Isolation and structure elucidation of a flavanone, a flavanone glycoside and vomifoliol from Echiochilon fruticosum growing in Tunisia. Molecules 2004; 9: 602-608
  • 33 Kang TH, Jeong SJ, Ko WG, Kim NY, Lee BH, Inagaki M, Miyamoto T, Higuchi R, Kim YC. Cytotoxic lavandulyl flavanones from Sophora flavescens . J Nat Prod 2000; 63: 680-681
  • 34 Singh V, Yadav B, Pandey V. Flavanone glycosides from Alhagi pseudalhagi . Phytochemistry 1999; 51: 587-590
  • 35 Siewek F, Herrmann K, Grotjahn L, Wray V. Isomeric di-C-glycosylflavones in fig (Ficus carica L.). Z Naturforsch C 1985; 40: 8-12
  • 36 Xie C, Veitch NC, Houghton PJ, Simmonds MS. Flavone C-glycosides from Viola yedoensis Makino. Chem Pharm Bull 2003; 51: 1204-1207
  • 37 Silva VCDA, Carvalho MGDE, Silva LDC. Chemical constituents from roots of Andira anthelmia (Legumonosae). Rev Latinoam Quím 2007; 35: 13-19
  • 38 Maltese F, Erkelens C, van der Kooy F, Choi YH, Verpoorte R. Identification of natural epimeric flavanone glycosides by NMR spectroscopy. Food Chem 2009; 116: 575-579
  • 39 Lallemand J, Duteil M. 13C nmr spectra of quercetin and rutin. Magn Reson Chem 1977; 9: 179-180
  • 40 Moon BH, Lee YS, Shin CS, Lim YH. Complete assignments of the 1H and 13C NMR data of flavone derivatives. Bull Korean Chem Soc 2005; 26: 603-608
  • 41 Napolitano JG, Lankin DC, Chen SN, Pauli GF. Complete 1HNMR spectral analysis of ten chemical markers of Ginkgo biloba . Magn Reson Chem 2012; 50: 569-575
  • 42 Viswanadhan VN, Ghose AK, Revankar GR, Robins RK. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. J Chem Inf Comput Sci 1989; 29: 163-172
  • 43 Doak BC, Over B, Giordanetto F, Kihlberg J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 2014; 21: 1115-1142
  • 44 Kar A. Pharmacognosy and Pharmacobiotechnology. New Delhi: New Age International; 2003
  • 45 House RP, Pozzuto M, Patel P, Dulyaninova NG, Li ZH, Zencheck WD, Vitolo MI, Weber DJ, Bresnick AR. Two functional S100A4 monomers are necessary for regulating nonmuscle myosin-IIA and HCT116 cell invasion. Biochemistry 2011; 50: 6920-6932
  • 46 DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 2010; 184: 1918-1930
  • 47 Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL, Grogan JL. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A 2012; 109: 5399-5404
  • 48 Yang B, Feng YJ, Vu H, McCormick B, Rowley J, Pedro L, Crowther GJ, Van Voorhis WC, Forster PI, Quinn RJ. Bioaffinity mass spectrometry screening. J Biomol Screen 2016; 21: 194-200