Planta Med 2018; 84(09/10): 674-683
DOI: 10.1055/a-0599-1145
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Shikonin Prevents Early Phase Inflammation Associated with Azoxymethane/Dextran Sulfate Sodium-Induced Colon Cancer and Induces Apoptosis in Human Colon Cancer Cells

Isabel Andújar*
1   Departament de Farmacologia, Universitat de València, Valencia, Spain
2   FISABIO-Fundación Hospital Universitario Dr. Peset, Valencia, Spain (Present address)
3   Departamento de Ciencias Biomédicas. Universidad Europea de Valencia, Valencia, Spain
,
Alberto Martí-Rodrigo*
1   Departament de Farmacologia, Universitat de València, Valencia, Spain
,
Rosa María Giner
1   Departament de Farmacologia, Universitat de València, Valencia, Spain
,
José Luis Ríos
1   Departament de Farmacologia, Universitat de València, Valencia, Spain
,
María Carmen Recio
1   Departament de Farmacologia, Universitat de València, Valencia, Spain
› Author Affiliations
Further Information

Publication History

received 27 December 2017
revised 21 March 2018

accepted 26 March 2018

Publication Date:
11 April 2018 (online)

Abstract

Shikonin is the main active principle in the root of Lithospermum erythrorhizon, widely used in traditional Chinese medicine for its anti-inflammatory and wound healing properties. Recent research highlights shikoninʼs antitumor properties and capacity to prevent acute ulcerative colitis. The aim of the present study was to evaluate the ability of shikonin to prevent, in vivo, the early phases of colorectal cancer development, with special focus on its cytotoxic mechanism in vitro. We employed the azoxymethane/dextran sulfate sodium model of colitis in Balb/C mice. Body weight and drinking were monitored throughout the experiment, and length of colon and lesions of the colon were recorded on termination of the experiment in all of the experimental groups. Colons underwent histological evaluation and biochemical analyses [myeloperoxidase activity assay, measurement of interleukin-6, evaluation of proinflammatory enzymes (cyclooxygenase-2 and inducible nitric oxide synthase), and nuclear factor-κB activation by Western blot]. Caco-2 cells were used to evaluate, in vitro, the effect of shikonin on proliferation, cytotoxicity, cell cycle, and apoptosis. Our results reveal that shikonin significantly protected the intestinal tissue of our animals by preventing the shortening of the colorectum and ulcer formation in a dose-dependent manner. Shikonin attenuated the expression of cyclooxygenase-2 and inducible nitric oxide synthase, and myeloperoxidase activity, and inhibited the production of interleukin-6 and activation of nuclear factor-κB. It induced Bcl-2 and inhibited caspase 3. In conclusion, shikonin acts as a chemopreventive agent in the azoxymethane/dextran sulfate sodium model through inhibition of the proinflammatory milieu generated during the disease, an important risk factor in cancer development.

* Isabel Andújar and Alberto Martí-Rodrigo contributed equally to this study.


 
  • References

  • 1 De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L, Signori E, Fazio VM. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog 2011; 10: 9
  • 2 Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 2008; 118: 560-570
  • 3 Xie J, Itzkowitz SH. Cancer in inflammatory bowel disease. World J Gastroenterol 2008; 14: 378-389
  • 4 Rizzo A, Pallone F, Monteleone G, Fantini MC. Intestinal inflammation and colorectal cancer: a double-edged sword?. World J Gastroenterol 2011; 17: 3092-3100
  • 5 Talero E, Sánchez-Fidalgo S, Villegas I, De La Lastra CA, Illanes M, Motilva V. Role of different inflammatory and tumor biomarkers in the development of ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis 2011; 17: 696-710
  • 6 Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285-296
  • 7 Clapper ML, Gary MA, Coudry RA, Litwin S, Chang WCL, Devarajan K, Lubet RA, Cooper HS. 5-aminosalicylic acid inhibits colitis-associated colorectal dysplasias in the mouse model of azoxymethane/dextran sulfate sodium-induced colitis. Inflamm Bowel Dis 2008; 14: 1341-1347
  • 8 Recio MC, Andújar I, Ríos JL. Anti-inflammatory agents from plants: progress and potential. Curr Med Chem 2012; 19: 2088-2103
  • 9 Chen X, Yang L, Oppenheim JJ, Howard OMZ. Cellular pharmacology studies of shikonin derivatives. Phyther Res 2002; 16: 199-209
  • 10 Andújar I, Ríos JL, Giner RM, Cerdá JM, Recio MC. Beneficial effect of shikonin on experimental colitis induced by dextran sulfate sodium in Balb/C mice. Evid Based Complement Alternat Med 2012; 2012: 271606
  • 11 Andújar I, Ríos JL, Giner RM, Recio MC. Shikonin promotes intestinal wound healing in vitro via induction of TGF-β release in IEC-18 cells. Eur J Pharm Sci 2013; 49: 637-641
  • 12 Andújar I, Recio MC, Giner RM, Ríos JL. Traditional chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy. Curr Med Chem 2013; 20: 2892-2898
  • 13 Waldner MJ, Foersch S, Neurath MF. Interleukin-6–a key regulator of colorectal cancer development. Int J Biol Sci 2012; 8: 1248-1253
  • 14 Ghosh S, Hayden MS. New regulators of NF-kB in inflammation. Nat Rev Immunol 2008; 8: 837-848
  • 15 Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, Knuechel R, Baeuerle PA, Schölmerich J, Gross V. Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 1998; 115: 357-369
  • 16 Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 1998; 42: 477-484
  • 17 Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 2007; 6: 1641-1649
  • 18 Rajasekar S, Park DJ, Park C, Park S, Park YH, Kim ST, Choi YH, Choi YW. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. J Ethnopharmacol 2012; 144: 335-345
  • 19 Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology 2011; 140: 1807-1816
  • 20 Subramanian V, Logan RF. Chemoprevention of colorectal cancer in inflammatory bowel disease. Best Pract Res Clin Gastroenterol 2011; 25: 593-606
  • 21 Ríos JL, Recio MC, Escandell JMM, Andújar I. Inhibition of transcription factors by plant-derived compounds and their implications in inflammation and cancer. Curr Pharm Des 2009; 15: 1212-1237
  • 22 Suzuki S, Sakamoto S, Mitamura T, Sassa S, Kudo H, Yamashita Y. Preventive effects of sulphasalazine on colorectal carcinogenesis in mice with ulcerative colitis. In Vivo 2000; 14: 463-466
  • 23 Popivanova BK, Kostadinova FI, Furuichi K, Shamekh MM, Kondo T, Wada T, Egashira K, Mukaida N. Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Res 2009; 69: 7884-7892
  • 24 Shang K, Bai YP, Wang C, Wang Z, Gu HY, Du X, Zhou XY, Zheng CL, Chi YY, Mukaida N, Li YY. Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One 2012; 7: e51848
  • 25 Natsui M, Kawasaki K, Takizawa H. Selective depletion of neutrophils by a monoclonal antibody, RP-3, suppresses dextran sulphate sodium-induced colitis in rats. J Gastroenterol Hepatol 1997; 12: 801-808
  • 26 Rogler G. Where are we heading to in pharmacological IBD therapy?. Pharmacol Res 2015; 100: 220-227
  • 27 Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183-1188
  • 28 Sinicrope FA, Gill S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev 2004; 23: 63-75
  • 29 Li Q, Withoff S, Verma IM. Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol 2005; 26: 318-325
  • 30 Wu Z, Wu L, Li L, Tashiro S, Onodera S, Ikejima T. p53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells. J Pharmacol Sci 2004; 94: 166-176
  • 31 Guo XP, Zhang XY, Zhang SD. Clinical trial on the effects of shikonin mixture on later stage lung cancer. Chinese J Mod Dev Tradit Med 1991; 11: 598-599 580
  • 32 Karayannopoulou M, Tsioli V, Loukopoulos P, Anagnostou TL, Giannakas N, Savvas I, Papazoglou LG, Kaldrymidou E. Evaluation of the effectiveness of an ointment based on Alkannins/Shikonins on second intention wound healing in the dog. Can J Vet Res 2011; 75: 42-48
  • 33 Papageorgiou VP, Assimopoulou AN, Ballis AC. Alkannins and shikonins: a new class of wound healing agents. Curr Med Chem 2008; 15: 3248-3267
  • 34 Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 2003; 94: 965-973
  • 35 Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem 1983; 132: 345-352
  • 36 Rosengren S, Firestein GS, Boyle DL. Measurement of inflammatory biomarkers in synovial tissue extracts by enzyme-linked immunosorbent assay. Clin Diagn Lab Immunol 2003; 10: 1002-1010
  • 37 Sugimoto K, Hanai H, Tozawa K, Aoshi T, Uchijima M, Nagata T, Koide Y. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 2002; 123: 1912-1922
  • 38 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 39 Sobell HM. Actinomycin and DNA transcription. Proc Natl Acad Sci U S A 1985; 82: 5328-5331