Planta Med 2018; 84(09/10): 684-695
DOI: 10.1055/a-0590-5153
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Discovery of Bioactive Natural Products for the Treatment of Acute Respiratory Infections – An Integrated Approach[*]

Ulrike Grienke
1   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
,
Christina E. Mair
1   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
,
Johannes Kirchmair
2   Center for Bioinformatics, Department of Informatics, MIN Faculty, Universität Hamburg, Hamburg, Germany
,
Michaela Schmidtke
3   Section of Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Jena, Germany
,
Judith M. Rollinger
1   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
› Author Affiliations
Further Information

Publication History

received 16 November 2017
revised 01 March 2018

accepted 07 March 2018

Publication Date:
19 March 2018 (online)

Abstract

In this work, an integrated approach for the identification of new antiviral agents from natural sources for the treatment of acute respiratory infections is presented. The approach comprises (i) the selection of starting material based on traditional knowledge, (ii) phenotypic screening of extracts for antiviral activity, and (iii) the implementation of in silico predictions to identify antiviral compounds and derive the molecular mechanism underlying their biological activity. A variety of starting materials from plants and fungi was selected for the production of 162 extracts. These extracts were tested in cytopathic effect inhibition assays against influenza virus A/Hong Kong/68 (HK/68), rhinovirus A2 (RV-A2), and coxsackie virus B3 (CV-B3). All extracts were also evaluated regarding their cytotoxicity. At an IC50 threshold of 50 µg/mL, 20, 11, and 14% of all tested extracts showed antiviral activity against HK/68, CV-B3, and RV-A2, respectively. Among all active extracts (n = 47), 68% showed antiviral activity against one of the investigated viruses, whereas 31% inhibited at least two viruses. Herein, we present a comprehensive dataset of probed extracts along with their antiviral activities and cytotoxicity. Application examples presented in this work illustrate the phytochemical workflow for the identification of antiviral natural compounds. We also discuss the challenges, pitfalls, and advantages of the integrated approach.

* Dedicated to “Women in Natural Products Science”.


Supporting Information

 
  • References

  • 1 World Health Organization. The top 10 causes of death. Available at. http://www.who.int/mediacentre/factsheets/fs310/en Accessed September 29, 2017
  • 2 Jacobs SE, Lamson DM, St George K, Walsh TJ. Human rhinoviruses. Clin Microbiol Rev 2013; 26: 135-162
  • 3 McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 2014; 12: 252-262
  • 4 Melvin JA, Bomberger JM. Compromised defenses: exploitation of epithelial responses during viral-bacterial co-infection of the respiratory tract. PLoS Pathog 2016; 12: e1005797
  • 5 Bauer L, Lyoo H, van der Schaar HM, Strating JR, van Kuppeveld FJ. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections. Curr Opin Virol 2017; 24: 1-8
  • 6 Rollinger JM, Schmidtke M. The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev 2011; 31: 42-92
  • 7 Millner VS, Eichold 2nd BH, Franks RD, Johnson GD. Influenza vaccination acceptance and refusal rates among health care personnel. South Med J 2010; 103: 993-998
  • 8 Nguyen T, Henningsen KH, Brehaut JC, Hoe E, Wilson K. Acceptance of a pandemic influenza vaccine: a systematic review of surveys of the general public. Infect Drug Resist 2011; 4: 197-207
  • 9 World Health Organization. Facts sheet on seasonal influenza. Available at. http://www.who.int/mediacentre/factsheets/fs211/en Accessed November 30, 2016
  • 10 Hurt AC, Besselaar TG, Daniels RS, Ermetal B, Fry A, Gubareva L, Huang W, Lackenby A, Lee RT, Lo J, Maurer-Stroh S, Nguyen HT, Pereyaslov D, Rebelo-de-Andrade H, Siqueira MM, Takashita E, Tashiro M, Tilmanis D, Wang D, Zhang W, Meijer A. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014–2015. Antiviral Res 2016; 132: 178-185
  • 11 Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 2017; 93: 449-463
  • 12 Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, Leang SK, Lee RT, Iannello P, Gehrig N, Shaw R, Wark P, Caldwell N, Givney RC, Xue L, Maurer-Stroh S, Dwyer DE, Wang B, Smith DW, Levy A, Booy R, Dixit R, Merritt T, Kelso A, Dalton C, Durrheim D, Barr IG. Characteristics of a widespread community cluster of H275Y oseltamivir-resistant A(H1N1)pdm09 influenza in Australia. J Infect Dis 2012; 206: 148-157
  • 13 Takashita E, Kiso M, Fujisaki S, Yokoyama M, Nakamura K, Shirakura M, Sato H, Odagiri T, Kawaoka Y, Tashiro M. Characterization of a large cluster of influenza A(H1N1)pdm09 viruses cross-resistant to oseltamivir and peramivir during the 2013–2014 influenza season in Japan. Antimicrob Agents Chemother 2015; 59: 2607-2617
  • 14 Hurt AC, Ernest J, Deng YM, Iannello P, Besselaar TG, Birch C, Buchy P, Chittaganpitch M, Chiu SC, Dwyer D, Guigon A, Harrower B, Kei IP, Kok T, Lin C, McPhie K, Mohd A, Olveda R, Panayotou T, Rawlinson W, Scott L, Smith D, DʼSouza H, Komadina N, Shaw R, Kelso A, Barr IG. Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res 2009; 83: 90-93
  • 15 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
  • 16 Rollinger JM, Langer T, Stuppner H. Strategies for efficient lead structure discovery from natural products. Curr Med Chem 2006; 13: 1491-1507
  • 17 Chen Y, de Bruyn Kops C, Kirchmair J. Data resources for the computer-guided discovery of bioactive natural products. J Chem Inf Model 2017; 57: 2099-2111
  • 18 Swinney DC, Anthony J. How were new medicines discovered?. Nat Rev Drug Discov 2011; 10: 507-519
  • 19 Berendes J. Des Pedanios Dioskurides aus Anazarbos Arzneimittellehre in fünf Büchern: reprint. Vaduz, Lichtenstein: Sändig Reprints Verlag; 1997
  • 20 König R, Hopp J, Glöckner W, Winkler G. Plinius Secundus d. Ä. Naturkunde, Books XX–XVII. München, Zürich: Artemis Publisher; 1985
  • 21 Pahlow M. Das große Buch der Heilpflanzen. München: Gräfe und Unzer; 1993
  • 22 Ausserer O. Volksmedizin in Tirol. Tisens, Italy: EU Interregnum-II-Project; 2001
  • 23 Camp D, Davis RA, Campitelli M, Ebdon J, Quinn RJ. Drug-like properties: guiding principles for the design of natural product libraries. J Nat Prod 2012; 75: 72-81
  • 24 Kratz JM, Mair CE, Oettl SK, Saxena P, Scheel O, Schuster D, Hering S, Rollinger JM. hERG channel blocking ipecac alkaloids identified by combined in silico – in vitro screening. Planta Med 2016; 82: 1009-1015
  • 25 Schmidtke M, Schnittler U, Jahn B, Dahse H, Stelzner A. A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1. J Virol Methods 2001; 95: 133-143
  • 26 Makarov VA, Riabova OB, Granik VG, Wutzler P, Schmidtke M. Novel [(biphenyloxy)propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication. J Antimicrob Chemother 2005; 55: 483-488
  • 27 Jones WP, Kinghorn DA. Vegetable Tannins. In: Sarker SD, Latif Z, Gray AI. eds. Natural Products Isolation. Totowa, New Jersey: Humana Press Inc.; 2006: 338
  • 28 Kinghorn AD, Pan L, Fletcher JN, Chai H. The relevance of higher plants in lead compound discovery programs. J Nat Prod 2011; 74: 1539-1555
  • 29 Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH, Haslam E. Polyphenol complexation – some thoughts and observations. Phytochemistry 1988; 27: 2397-2409
  • 30 Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, Jiang ZH. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia 2014; 93: 47-53
  • 31 Bahramsoltani R, Sodagari HR, Farzaei MH, Abdolghaffari AH, Gooshe M, Rezaei N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev Anti Infect Ther 2016; 14: 57-80
  • 32 Theisen LL, Erdelmeier CA, Spoden GA, Boukhallouk F, Sausy A, Florin L, Muller CP. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus. PLoS One 2014; 9: e88062
  • 33 Mair CE, Grienke U, Wilhelm A, Urban E, Zehl M, Schmidtke M, Rollinger JM. Anti-influenza triterpene saponins from the bark of Burkea africana . J Nat Prod 2018; DOI: 10.1021/acs.jnatprod.7b00774.
  • 34 Rollinger JM, Schuster D, Danzl B, Schwaiger S, Markt P, Schmidtke M, Gertsch J, Raduner S, Wolber G, Langer T, Stuppner H. In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens . Planta Med 2009; 75: 195-204
  • 35 Mair CE, Liu R, Atanasov AG, Wimmer L, Nemetz-Fiedler D, Sider N, Heiss EH, Mihovilovic MD, Dirsch VM, Rollinger JM. Piperine congeners as inhibitors of vascular smooth muscle cell proliferation. Planta Med 2015; 81: 1065-1074
  • 36 Grienke U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P, Durrwald R, Wolber G, Liedl KR, Stuppner H, Rollinger JM. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai . J Med Chem 2010; 53: 778-786
  • 37 Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, von Grafenstein S, Liedl KR, Schmidtke M, Rollinger JM. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod 2014; 77: 563-570
  • 38 Grienke U, Richter M, Walther E, Hoffmann A, Kirchmair J, Makarov V, Nietzsche S, Schmidtke M, Rollinger JM. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae . Sci Rep 2016; 6: 27156
  • 39 Grienke U, Kaserer T, Pfluger F, Mair CE, Langer T, Schuster D, Rollinger JM. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry 2015; 114: 114-124
  • 40 Grienke U, Mihaly-Bison J, Schuster D, Afonyushkin T, Binder M, Guan SH, Cheng CR, Wolber G, Stuppner H, Guo DA, Bochkov VN, Rollinger JM. Pharmacophore-based discovery of FXR-agonists. Part II: identification of bioactive triterpenes from Ganoderma lucidum . Bioorg Med Chem 2011; 19: 6779-6791
  • 41 Bauer K, Richter M, Wutzler P, Schmidtke M. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006. Antiviral Res 2009; 82: 34-41
  • 42 Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938; 27: 493-497
  • 43 Makarov VA, Braun H, Richter M, Riabova OB, Kirchmair J, Kazakova ES, Seidel N, Wutzler P, Schmidtke M. Pyrazolopyrimidines: potent inhibitors targeting the capsid of rhino- and enteroviruses. ChemMedChem 2015; 10: 1629-1634