Planta Med 2018; 84(09/10): 638-644
DOI: 10.1055/a-0577-5322
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antiangiogenic Activity and Cytotoxicity of Triterpenoids and Homoisoflavonoids from Massonia pustulata and Massonia bifolia

Sianne L. Schwikkard
1   School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, United Kingdom
2   Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, United Kingdom
,
Hannah Whitmore
2   Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, United Kingdom
,
Timothy W. Corson
3   Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, U. S. A.
,
Kamakshi Sishtla
3   Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, U. S. A.
,
Moses K. Langat
2   Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, United Kingdom
4   School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
,
Mark Carew
1   School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, United Kingdom
,
Dulcie A. Mulholland
3   Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, U. S. A.
4   School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
› Author Affiliations
Further Information

Publication History

received 01 December 2017
revised 06 February 2018

accepted 08 February 2018

Publication Date:
28 February 2018 (online)

Abstract

The Hyacinthaceae family (sensu APGII), with approximately 900 species in around 70 genera, plays a significant role in traditional medicine in Africa as well as across Europe and the Middle and Far East. The dichloromethane extract of the bulbs of Massonia pustulata (Hyacinthaceae sensu APGII) yielded two known homoisoflavonoids, (R)-5-hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromanone 1 and 5-hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromone 2 and four spirocyclic nortriterpenoids, eucosterol 3, 28-hydroxyeucosterol 4 and two previously unreported triterpenoid derivatives, (17S,23S)-17α,23-epoxy-3β,22β,29-trihydroxylanost-8-en-27,23-olide 5, and (17S, 23S)-17α,23-epoxy-28,29-dihydroxylanost-8-en-3-on-27,23-olide 6. Compounds 1, 2, 3, and 5 were assessed for cytotoxicity against CaCo-2 cells using a neutral red uptake assay. Compounds 1, 2, and 5 reduced cell viability by 70% at concentrations of 30, 100, and 100 µM, respectively. Massonia bifolia yielded three known homoisoflavonoids, (R)-(4′-hydroxy)-5-hydroxy-7-methoxy-4-chromanone 1, (R)-(4′-hydroxy)-5,7-dihydroxy-4-chromanone 7 and (R)-(3′-hydroxy-4′-methoxy)-5,7-dihydroxy-4-chromanone 9, two previously unreported homoisoflavonoids, (E)-3-benzylidene-(3′,4′-dihydroxy)-5-hydroxy-7-methoxy-4-chromanone 8 and (R)-(3′,4′-dihydroxy)-5-hydroxy-7-methoxy-4-chromanone 10, and a spirocyclic nortriterpenoid, 15-deoxoeucosterol 11. Compounds 1, 1Ac, 7, 8, 9, and 10 were screened for antiangiogenic activity against human retinal microvascular endothelial cells. Some compounds showed dose-dependent antiproliferative activity and blocked endothelial tube formation, suggestive of antiangiogenic activity.

Supporting Information

 
  • References

  • 1 Martinez-Azorin M, Pinter M, Crespo MB, Slade J, Deutsch G, Wetschnig W. Clarification of Massonia echinata and some other frequently misunderstood Massonia species (Asparagaceae, Scilloideae), with the description of M. pseudoechinata and M. roggeveldensis . Phytotaxa 2015; 239: 101-129
  • 2 Martínez-Azorín M, Pinter M, Crespo M, Pfosser M, Wetschnig W. Massonia mimetica (Hyacinthaceae, Hyacinthoideae), a new remarkable species from South Africa. STAPFIA 2013; 99: 187-197
  • 3 Jacquin NJ. Plantarum rariorum horti caesarei Schoenbrunnensis descriptiones et icones. Schönbrunn: Austria; 1804
  • 4 DeBeer J, Van Wyk BE. An ethnobotanical survey of the Agter-Hantam region, Northern Cape Province of South Africa. S Afr J Bot 2011; 77: 741-754
  • 5 Manning JP, Goldblatt P, Saunders R. 721. Massonia bifolia . Curtisʼs Botanical Magazine 2011; 28: 324-332
  • 6 Manning JC, Goldblatt P, Fay M. Revised generic synopsis of Hyacinthaceae in sub-Saharan Africa, based on molecular evidence, including new combinations and the new tribe Pseudoprospereae. Edinb J Bot 2003; 60: 533-568
  • 7 Mulholland DA, Schwikkard SL, Crouch NR. The chemistry and biological activity of the Hyacinthaceae. Nat Prod Reports 2013; 30: 1165-1210
  • 8 Gaidamashvili A, van Staden J. Prostaglandin inhibitory activity by lectin-like proteins from South African medicinal plants. S Afr J Bot 2006; 72: 661-663
  • 9 du Toit K, Kweyama A, Bodenstein J. Anti-inflammatory and antimicrobial profiles of Scilla nervosa (Burch.) Jessop (Hyacinthaceae). S A J Sci 2011; 107: 96-100
  • 10 Waller CP, Thumser AE, Langat MK, Crouch NR, Mulholland DA. COX-2 inhibitory activity of homoisoflavanones and xanthones from the bulbs of the Southern African Ledebouria socialis and Ledebouria ovatifolia (Hyacinthaceae: Hyacinthoideae). Phytochemistry 2013; 95: 284-290
  • 11 Abegaz BM. Novel phenylanthraquinones, isofuranonaphthoquinones, homoisoflavonoids, and biflavonoids from African plants in the genera Bulbine, Scilla, Ledebouria, and Rhus . Phytochem Rev 2002; 1: 299-310
  • 12 Silayo A, Ngadjui BT, Abegaz BM. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp rigidifolia . Phytochemistry 1999; 52: 947-955
  • 13 Mimaki Y, Nishino H, Ori K, Kuroda M, Matsui T, Sashida Y. Lanosterol oligosaccharides from plants of the subfamily Scilloideae and their antitumor-promoter activity. Chem Pharm Bull 1994; 42: 327-333
  • 14 Ori K, Koroda M, Mimaki Y, Sakagami H, Sashida Y. Lanosterol and tetranorlanosterol glycosides from the bulbs of Muscari paradoxum . Phytochemistry 2003; 64: 1351-1359
  • 15 Ori K, Kuroda M, Mimaki Y, Sakagami H, Sashida Y. Norlanostane and lanostane glycosides from the bulbs of Chionodoxa luciliae and their cytotoxic activity. Chem Pharm Bull 2003; 51: 92-95
  • 16 Kuroda M, Mimaki Y, Ori K, Koshino H, Nukada T, Sakagami H, Sashida Y. Lucilianosides A and B, two novel tetranor-lanostane hexaglycosides from the bulbs of Chionodoxa luciliae . Tetrahedron 2002; 58: 6735-6740
  • 17 Shim JS, Kim JH, Lee J, Kim SN, Kwon HJ. Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata . Planta Med 2004; 70: 171-173
  • 18 Basavarajappa HD, Lee B, Fei X, Lim D, Callaghan B, Mund JA, Case J, Rajashekhar G, Seo SY, Corson TW. Synthesis and mechanistic studies of a novel homoisoflavanone inhibitor of endothelial cell growth. PLoS One 2014; 9: e95694
  • 19 Basavarajappa HD, Lee B, Lee H, Sulaiman RS, An H, Magana C, Shadmand M, Vayl A, Rajashekhar G, Kim EY, Suh YG, Lee K, Seo SY, Corson TW. Synthesis and biological evaluation of novel homoisoflavonoids for retinal neovascularization. J Med Chem 2015; 58: 5015-5027
  • 20 Sulaiman RS, Basavarajappa HD, Corson TW. Natural product inhibitors of ocular angiogenesis. Exp Eye Res 2014; 129: 161-171
  • 21 Langlois A, Mulholland DA, Duncan GD, Crouch NR, Edwards TJ. A novel 3-benzylchromone from the South African Lachenalia rubida (Hyacinthaceae). Biochem Syst Ecol 2005; 33: 961-966
  • 22 Mutanyatta J, Matapa BG, Shushu DD, Abegaza BM. Homoisoflavonoids and xanthones from the tubers of wild and in vitro regenerated Ledebouria graminifolia and cytotoxic activities of some of the homoisoflavonoids. Phytochemistry 2003; 62: 797-804
  • 23 Ziegler R, Tamm C. Isolation and structureof eucosterol and 16β-hydroxyeucosterol, two novel spirocyclic nortriterpenes, and of a new 24-nor-5α-chola-8, 16-dien-oic acid, from bulbs of several Eucomis species. Helv Chim Acta 1976; 59: 1997-2011
  • 24 Sihra JK, Thumser AE, Langat MK, Crouch NR, Mulholland DA. Constituents of bulbs of three species of the Hyacinthaceae (Hyacinthoideae): Eucomis vandermerwei, E. zambesiaca and Resnova humifusa . Nat Prod Comm 2015; 10: 1207-1209
  • 25 Ren F, Wang L, Wang F, Li B. Chemical constituents from Scilla scilloides . Chinese Trad Herbal Drugs 2014; 14: 1984-1988
  • 26 Adinolfi M, Barone G, Belardini M, Lanzetta R, Laonigro G, Parrilli M. Three 3-benzyl-4-chromanones from Muscari comosum . Phytochemistry 1984; 23: 2091-2093
  • 27 Nishida Y, Eto M, Miyashita H, Ikeda T, Yamaguchi K, Yoshimitsu H, Nohara T, Ono M. A new homostilbene and two new homoisoflavonoids from the bulbs of Scilla scilloides . Chem Pharm Bull 2008; 56: 1022-1025
  • 28 Koorbanally C, Sewjee S, Mulholland D, Crouch N, Dold A. Homoisoflavanones from Pseudoprospero firmifolium of the monotypic tribe Pseudoprospereae (Hyacinthaceae: Hyacinthoideae). Phytochemistry 2007; 68: 2753-2756
  • 29 Ren FC, Wang LX, Yu Q, Jiang XJ, Wang F. Lanostane-type triterpenoids from Scilla scilloides and structure revision of drimiopsin D. Nat Prod Bioprospect 2015; 5: 263-270
  • 30 Moodley N, Crouch N, Mulholland D, Slade D, Ferreira D. 3-Benzyl-4-chromanones (homoisoflavanones) from bulbs of the ethnomedicinal geophyte Ledebouria revoluta (Hyacinthaceae). S Afr J Bot 2006; 72: 517-520
  • 31 Koorbanally C, Crouch N, Langlois A, DuToit K, Mulholland D, Drewes S. Homoisoflavanones and spirocyclic nortriterpenoids from three Eucomis species: E. comosa, E. schijffii and E. pallidiflora subsp. pole-evansii (Hyacinthaceae). S Afr J Bot 2006; 72: 428-433
  • 32 Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 2008; 3: 1125-1131
  • 33 Zhang JH, Chung TDY, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 1999; 4: 67-73
  • 34 Basavarajappa HD, Sulaiman RS, Qi X, Shetty T, Sheik Pran Babu S, Sishtla KL, Lee B, Quigley J, Alkhairy S, Briggs CM, Gupta K, Tang B, Shadmand M, Grant MB, Boulton ME, Seo SY, Corson TW. Ferrochelatase is a therapeutic target for ocular neovascularization. EMBO Mol Med 2017; 9: 786-801
  • 35 Carpentier G. Angiogenesis Analyzer for ImageJ. Available at: http://imagej.nih.gov/ij/macros/toolsets/Angiogenesis Analyzer.txt Accessed November 30, 2017